DOI QR코드

DOI QR Code

Static and fatigue performance of short group studs connector in novel post-combination steel-UHPC composite deck

  • Han Xiao (Department of Bridge Engineering, Tongji University) ;
  • Wei Wang (Shanghai Municipal Engineering Design Institute (Group) Co. Ltd.) ;
  • Chen Xu (Department of Bridge Engineering, Tongji University) ;
  • Sheraz Abbas (Department of Bridge Engineering, Tongji University) ;
  • Zhiping Lin (Fujian Expressway Group Co. Ltd)
  • Received : 2022.07.15
  • Accepted : 2024.01.04
  • Published : 2024.03.25

Abstract

Casting Ultra High-Performance Concrete (UHPC) on an orthotropic steel deck and forming a composite action by connectors could improve the steel deck fatigue performance. This study presents the mechanical performance of a proposed post-combination connection between UHPC and steel, which had a low constraint effect on UHPC shrinkage. A total of 10 push-out tests were conducted for static and fatigue performance investigations. And the test results were compared with evaluation methods in codes to verify the latter's applicability. Meanwhile, nonlinear simulation and parametric works with material damage plasticity models were also conducted for the static and fatigue failure mechanism understanding. The static and fatigue test results both showed that fractures at stud roots and surrounding local UHPC crushes were the main failure appearances. Compared with normally arranged studs, group arrangement could result in reductions of static stud shear stiffness, strength, and fatigue lives, which were about 18%, 12%, and 27%, respectively. Compared with the test results, stud shear capacity and fatigue lives evaluations based on the codes of AASHTO, Eurocode 4, JSCE and JTG D64 could be applicable in general while the safety redundancies tended to be smaller or even insufficient for group studs. The analysis results showed that arranging studs in groups caused obviously uneven strain distributions. The severer stress concentration and larger strain ranges caused the static and fatigue performance degradations of group studs. The research outcome provides a very important basis for establishing a design method of connections in the novel post-combination steel-UHPC composite deck.

Keywords

Acknowledgement

This study was supported by the National Natural Science Foundation of China (51978501) and the 2022 Transportation Science and Technology Project of Fujian Province (202126).

References

  1. AASHTO (2017), AASHTO LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials; Washington, USA.
  2. Ahn, J.H., Kim, S.H. and Jeong, Y.J. (2007), "Fatigue experiment of stud welded on steel plate for a new bridge deck system", Steel Compos. Struct., 7(5), 391-404. https://doi.org/10.12989/scs.2007.7.5.391
  3. Baskar K., Shanmugam N.E. and Thevendran V. (2002), "Finite-element analysis of steel-concrete composite plate girder", J. Struct. Eng., 128(9). https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1158).
  4. Cao, J., Shao, X., Deng, L. and Gan, Y. (2017), "Static and fatigue behavior of short-headed studs embedded in a thin ultrahigh-performance concrete layer", J. Bridge Eng., 22(5), 4017005. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001031.
  5. Dassault System (2016), ABAQUS Documentation version 6.14, USA.
  6. Doinghaus, P., Goralski, C. and Will, N. (2001), "Design rules for composite structures with high performance steel and high performance concrete", International Conference on High Performance Materials in Bridges, Kona, Hawaii, United States, August.
  7. Eurocode 4 (2004), Design of Composite Steel and Concrete Structures. Part 2 General Rules and Rules for Bridges, European Committee for Standardization; Brussels, Belgium.
  8. Ahn, J.H., Kim, S.H. and Jeong, Y.J. (2007), "Fatigue experiment of stud welded on steel plate for a new bridge deck system", Steel Compos. Struct., 7(5), 391-404. http://dx.doi.org/10.12989/scs.2007.7.5.391.
  9. He, J., Lin, Z., Liu, Y., Xu, X., and Wang, S. (2020), "Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders", Steel Compos. Struct., 36(5), 553-568. https://doi.org/10.12989/scs.2020.36.5.553.
  10. Hu, Y., Zhao, G., He, Z. Q., Qi, J. and Wang, J. (2020), "Experimental and numerical study on static behavior of grouped large-headed studs embedded in UHPC", Steel Compos. Struct., 36(1), 103-118. https://doi.org/10.12989/scs.2020.36.1.103.
  11. Huang, Y., Chen, S. and Gu, P. (2021), "Static and fatigue behavior of shear stud connection embedded in UHPC", Structures., 34, 2777-2788. https://doi.org/10.1016/j.istruc.2021.09.043.
  12. I., M.V. (1956), "Investigation of stud shear connectors for composite concrete and steel T-beams", J. Amer. Concrete Institute, 27(8), 875-891. https://doi.org/10.14359/11655.
  13. Jee-Sang, K., Jongwon, K., Changbin, J., Sung-Won, Y. and Kyoung-Chan, L. (2015), "Headed stud shear connector for thin ultrahigh-performance concrete bridge deck", J. Const. Steel Res., 108, 23-30. https://doi.org/10.1016/j.jcsr.2015.02.001.
  14. Jeeho, L. and Gregory, L.F. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
  15. JSCE (2014), Standard Specification for Hybrid Structures.
  16. JTG D64-2015 (2015), Specifications for Design of Highway Steel Bridge, China communications press; Beijing, China.
  17. Lamine, D., Pierre, M., Fernanda, G., Christian, T. and Francois, T. (2013), "Use of UHPFRC overlay to reduce stresses in orthotropic steel decks", J. Const. Steel Res., 89, 30-41. https://doi.org/10.1016/j.jcsr.2013.06.006.
  18. Lemaitre, J. (1985). "A continuous damage mechanics model for ductile fracture", J. Eng. Mater. Technol. Transact. Asme, 107, 83-89. https://doi.org/10.1115/1.3225775.
  19. Li, M., Hao, H., Shi, Y. and Hao, Y. (2018), "Specimen shape and size effects on the concrete compressive strength under static and dynamic tests", Const. Build, Mater., 161, 84-93. https://doi.org/10.1016/j.conbuildmat.2017.11.069.
  20. Li, W., Huang, Z., Hu, G., Hui Duan, W. and Shah, S.P. (2017), "Early-age shrinkage development of ultra-high-performance concrete under heat curing treatment", Const. Build. Mater., 131, 767-774. https://doi.org/10.1016/j.conbuildmat.2016.11.024.
  21. Lin, J.P., Wu, Z.B., Yin, Y. and Fan F. (2020), "Analysis of shear connector of steel - concrete composite box-girder bridge considering interfacial bonding and friction", Int. J. Steel Struct., 20(2). https://doi.org/10.1007/s13296-019-00296-2.
  22. Liu, Y., Zhang, Q., Bao, Y. and Bu, Y. (2020), "Fatigue behavior of orthotropic composite deck integrating steel and engineered cementitious composite", Eng. Struct., 220, 111017. https://doi.org/10.1016/j.engstruct.2020.111017.
  23. Luo, Y., Hoki, K., Hayashi, K. and Nakashima, M. (2016), "Behavior and strength of headed stud-SFRCC shear connection. I: Experimental study", J. Struct. Eng., 142(2), https://doi.org/10.1061/(ASCE)ST.1943-541X.0001363.
  24. Brown, M.W. and Miller, K.J. (1973), "A theory for fatigue failure under multiaxial stress-strain conditions", Proceedings of the Institution of Mechanical Engineers, 187(1), 745-755. https://doi.org/10.1243/pime_proc_1973_187_161_02.
  25. Manson, S.S., Halford, G.R. and Hirschberg, M.H., (1971), "Creep-fatigue analysis by strain-range partitioning", First Symposium Design for Elevated Temperature Environment, New York, May.
  26. Oehlers, D.J. and Coughlan, C.G. (1986), "The shear stiffness of stud shear connections in composite beams", J. Const. Steel Res., 6(4), 273-284. https://doi.org/10.1016/0143-974X(86)90008-8.
  27. Sharifa, A. M., Assi, N. and Al-Osta, M., (2020), "Use of UHPC slab for continuous composite steel-concrete girders", Steel Compos. Struct., 34(3), 321-332. https://doi.org/10.12989/scs.2020.34.3.321.
  28. Shi, G.Y. and Li G.Y. (2021), "Evaluation of fatigue life of stud in steel-UHPC composite structure based on fracture mechanics", J. Chang'an Univ. (Natural Science Edition), 41(02), 102-13. https://doi.org/10.19721/j.cnki.1671-8879.2021.02.010.
  29. Spremic, M., Pavlovic, M., Markovic, Z., Veljkovic, M. and Budjevac, D. (2018), "FE validation of the equivalent diameter calculation model for grouped headed studs", Steel Compos. Struct., 26(3), 375-386. https://doi.org/10.12989/scs.2018.26.3.375.
  30. Tong, L., Chen, L., Wen, M. and Xu, C. (2020), "Static behavior of stud shear connectors in high-strength-steel-UHPC composite beams", Eng. Struct., 218, 110827. https://doi.org/10.1016/j.engstruct.2020.110827.
  31. Wang, B., Huang, Q. and Liu, X.L. (2017), "Deterioration in strength of studs based on two-parameter fatigue failure criterion", Steel Compos. Struct., 23(2), 239-250. https://doi.org/10.12989/scs.2017.23.2.239.
  32. Xu, C., Su, Q. and Masuya, H. (2017), "Static and fatigue performance of stud shear connector in steel fiber reinforced concrete", Steel Compos. Struct., 24(4), 467-479. https://doi.org/10.12989/scs.2017.24.4.467.
  33. Xu, C., Su, Q.T. and Sugiura, K. (2017), "Mechanism study on the low cycle fatigue behavior of group studs shear connectors in steel-concrete composite bridges", J. Const. Steel Res., 138, 196-207. https://doi.org/10.1016/j.jcsr.2017.07.006.
  34. Xu, C., Sugiura, K., Wu, C. and Su, Q. (2012), "Parametrical static analysis on group studs with typical push-out tests", J. Const. Steel Res., 72, 84-96. https://doi.org/10.1016/j.jcsr.2011.10.029.
  35. Yoo, D., Park, J., Kim, S. and Yoon, Y. (2014), "Influence of reinforcing bar type on autogenous shrinkage stress and bond behavior of ultra high performance fiber reinforced concrete", Cement Concrete Compos., 48, 150-161. https://doi.org/10.1016/j.cemconcomp.2013.11.014.
  36. Zhang, S.H., Shao X.D., Huang X.J. and Yang B. (2016), "Static and Fatigue Behaviors of Small Stud Shear Connector for lightweight composite bridge deck", J. Highway Transport. Res. Develop., 33(11), 111-119. https://doi.org/10.3969/j.issn.1002-0268.2016.11.017.
  37. Zhao, H., Li, X., Chen, X., Qiao, C., Xu, W., Wang, P. and Song, H. (2021), "Microstructure evolution of cement mortar containing MgO-CaO blended expansive agent and temperature rising inhibitor under multiple curing temperatures", Cosnst. Build. Mater., 278, 122376. https://doi.org/10.1016/j.conbuildmat.2021.122376.