DOI QR코드

DOI QR Code

Assessment of seismic design coefficients for composite special moment frames with reinforced concrete columns and steel beams: Evaluation of code recommendations

  • Elmira Tavasoli Yousef Abadi (Department of Civil Engineering, Sharif University of Technology) ;
  • Mohammad T. Kazemi (Department of Civil Engineering, Sharif University of Technology)
  • 투고 : 2022.01.19
  • 심사 : 2024.01.13
  • 발행 : 2024.03.25

초록

The main aim of this study is to quantify the code seismic design coefficients of the RCS system, which consisted of reinforced concrete columns and steel beams, based on the FEMA P-695 methodology. The underlying intention is to evaluate the seismic performance of the RCS system at the system level rather than the connection level. A set of 24 archetype buildings with a various number of stories, beam span lengths, gravity load levels, and seismic load levels are selected and designed based on the prevailing code requirements. Nonlinear analytical models are developed and validated by experimental tests. The pushover and response history dynamic analyses are conducted to evaluate the required data in the performance quantification process. The results show that the design coefficients suggested by the code are acceptable. However, the level of conservatism is very high. Thus, it is possible to use a larger R-factor in the design process or make some relaxations in the design requirements related to this structural system.

키워드

과제정보

The authors are thankful to the High-Performance Computing (HPC) center of Sharif University of Technology for providing a platform to perform required analyses of this research.

참고문헌

  1. ACI (2019), Building Code Requirements for Structural Concrete (ACI 318-19), American Concrete Institute, Farmington Hills, MI.
  2. AIJ (2001), Design and Construction of Mixed Structures Composed of Reinforced Concrete Columns and Steel Beams, Architectural Institute of Japan, Tokyo, Japan.
  3. Alizadeh, S., Attari, N.K.A. and Kazemi, M.T. (2013), "The seismic performance of new detailing for RCS connections", J. Constr. Steel Res., 91, 76-88. https://doi.org/10.1016/j.jcsr.2013.08.010.
  4. Alizadeh, S., Attari, N.K.A. and Kazemi, M.T. (2015), "Experimental investigation of RCS connections performance using self-consolidated concrete", J. Constr. Steel Res., 114, 204-216. https://doi.org/10.1016/j.jcsr.2015.07.026.
  5. Altoontash, A. (2004), "Simulation and Damage Models for Performance Assessment of Reinforced Concrete Beam-Column Joints", Stanford university, Stanford, CA.
  6. ANSI/AISC (2016a), Seismic Provisions for Structural Steel Buildings (AISC 341), American Institute for Steel Construction, Chicago, IL.
  7. ANSI/AISC (2016b), Specification for Structural Steel Buildings (AISC 360), American Institute for Steel Construction, Chicago, IL.
  8. ANSYS (2013), ANSYS, ANSYS, Inc., Canonsburg, PA.
  9. ASCE Task Committee (1994), "Guidelines for design of joints between steel beams and reinforced concrete columns", J. Struct. Eng., 120 2330-2357. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2330).
  10. ASCE/SEI (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE 7-16), American Society of Civil Engineers, Reston, VA.
  11. ASCE/SEI (2022), Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE 7-22), American Society of Civil Engineers, Reston, VA.
  12. Attari, N., Azadvar, N. and Alizadeh, S. (2020), "Numerical investigation of cover plate in RCS connections", Sci. Iranica. 27(1), 10-24. https://doi.org/10.24200/SCI.2018.20564.
  13. Azad, S., Mirghaderi, S.R. and Epackachi, S. (2021), "Numerical investigation of steel and composite beam-to-encased composite column connection via a through-plate", Structures, 31, 14-28. https://doi.org/10.1016/j.istruc.2021.01.040.
  14. Bursi, O.S. and Gramola, G. (2000), "Behaviour of composite substructures with full and partial shear connection under quasi-static cyclic and pseudo-dynamic displacements", Mater. Struct., 33(3), 154-163. https://doi.org/10.1007/BF02479409.
  15. Charney, F.A. (2008), "Unintended consequences of modeling damping in structures", J. Struct. Eng., 134(4), 581-592. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:4(581).
  16. Cordova, P.P. and Deierlein, G. (2005), "Validation Of the Seismic Performance of Composite RCS Frames: Full-Scale Testing, Analytical Modeling, And Seismic Design", The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
  17. Dassault (2013), Abaqus Unified FEA, Paris, France.
  18. Deierlein, G.G. (1989), "Design of moment connections for composite framed structures", PhD dissertation, University of Texas at Austin, Austin, TX.
  19. Denavit, M.D., Hajjar, J.F., Perea, T. and Leon, R.T. (2016), "Seismic performance factors for moment frames with steel-concrete composite columns and steel beams", Earthquake Eng. Struct. Dyn., 45(10), 1685-1703. https://doi.org/10.1002/eqe.2737.
  20. Eghbali, N.B. and Mirghaderi, S.R. (2017), "Experimental investigation of steel beam to RC column connection via a through-plate", J. Constr. Steel Res., 133, 125-140. https://doi.org/10.1016/j.jcsr.2017.02.007.
  21. El-Tawil, S. and Deierlein, G.G. (2001), "Nonlinear analysis of mixed steel-concrete frames. I: Element formulation", J. Struct. Eng., 127(6), 647-655. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(647).
  22. Elkady, A. and Lignos, D.G. (2014), "Modeling of the composite action in fully restrained beam-to-column connections: implications in the seismic design and collapse capacity of steel special moment frames", Earthq. Eng. Struct. Dyn., 43(13), 1935-1954. https://doi.org/10.1002/eqe.2430.
  23. Farahmand Azar, B., Ghaffarzadeh, H. and Talebian, N. (2013), "Seismic performance of composite RCS special moment frames", KSCE J. Civil Eng., 17(2), 450-457. https://doi.org/10.1007/s12205-013-1431-5.
  24. FEMA (2009), "Quantification of Building Seismic Performance Factors (FEMA P695)", Federal Emergency Management Agency, Washington, DC.
  25. Filippou, F.C., Popov, E.P. and Bertero, V.V. (1983), "Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints", Earthquake Engineering Research Center, University of California, Berkeley, CA.
  26. Ghods, S., Kheyroddin, A., Nazeryan, M., Mirtaheri, S.M. and Gholhaki, M. (2016), "Nonlinear behavior of connections in RCS frames with bracing and steel plate shear wall", Steel Composite Structures, 22(4), 915-935. https://doi.org/10.12989/scs.2016.22.4.915.
  27. Gogus, A. and Wallace, J.W. (2015), "Seismic safety evaluation of reinforced concrete walls through FEMA P695 methodology", J. Struct. Eng., 141(10), 04015002. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001221.
  28. Griffis, L.G. (1986), "Some design considerations for composite-frame structures", Eng. J., AISC. 59-64.
  29. Habashizadeh Asl, M.H., Chenaglou, M.R., Abedi, K. and Afshin, H. (2013), "3D finite element modelling of composite connection of RCS frame subjected to cyclic loading", Steel Compos. Struct., 15(3), 281-298. https://doi.org/10.12989/scs.2013.15.3.281.
  30. Hall, J.F. (2006), "Problems encountered from the use (or misuse) of Rayleigh damping", Earthq. Eng. Struct. Dyn., 35(5), 525-545. https://doi.org/10.1002/eqe.541.
  31. Haselton, C.B., Liel, A.B., Deierlein, G.G., Dean, B.S. and Chou, J.H. (2011), "Seismic collapse safety of reinforced concrete buildings. I: assessment of ductile moment frames", J. Struct. Eng., 137(4), 481-491. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000318.
  32. Haselton, C.B., Liel, A.B., Taylor Lange, S. and Deierlein, G.G. (2008), "Beam-Column Element Model Calibrated for Predicting Flexural Response Leading to Global Collapse of RC Frame Buildings", Pacific Earthquake Engineering Research Center 2007/03, University of California, Berkeley, CA.
  33. Izaki, Y., Imanaka, N. and Morota, M. (1988), "Experimental Study on Reinforced Concrete Column to Steel Beam Joints of Tapered-Flange-Type Panels: Part 2-Evaluation of Experimental Results", Architectural Institute of Japan, Japan.
  34. Jafari, R., Attari, N.K.A., Nikkhoo, A. and Alizadeh, S. (2019), "Lateral performance of CRCS connections with tube plate", Steel Compos. Struct., 32(1), 37-57. https://doi.org/10.12989/scs.2019.32.1.037.
  35. Jafari, R., Attari, N.K.A., Nikkhoo, A. and Alizadeh, S. (2020), "Simplified method for modeling reinforced concrete column--steel beam connections with tube plate", Adv. Struct. Eng. 2292-2304. https://doi.org/10.1177/1369433220906224.
  36. Judd, J.P. and Pakwan, N. (2018), "Seismic performance of steel moment frame office buildings with square concrete-filled steel tube gravity columns", Eng. Struct., 172, 41-54. https://doi.org/10.1016/j.engstruct.2018.06.016.
  37. Kanno, R. (1993), "Strength, deformation, and seismic resistance of joints between steel beams and reinforced concrete columns.(Volumes I and II)", PhD dissertation, Cornell University, Ithaca, NY.
  38. Kanno, R. and Deierlein, G.G. (1996). "Seismic Behavior of Composite (RCS) Beam-Column Joint Subassemblies", Composite construction in steel and concrete III.
  39. Kanno, R. and Deierlein, G.G. (2002). "Design Model of Joints for RCS Frames", Composite Construction in Steel and Concrete IV, Alberta, Canada, May 28-June 2, 2000.
  40. Kathuria, D., Yoshikawa, H., Nishimoto, S., Kawamoto, S. and Deierlein, G. (2015), "Design of Composite RCS Special Moment Frames - Technical Report 189", John A. Blume Earthquake Engineering, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA.
  41. Khaloo, A. and Bakhtiari Doost, R. (2018), "Seismic performance of precast RC column to steel beam connections with variable joint configurations", Eng. Struct., 160, 408-418. https://doi.org/10.1016/j.engstruct.2018.01.039.
  42. Kolozvari, K., Kalbasi, K., Orakcal, K. and Wallace, J. (2021), "Three-dimensional model for nonlinear analysis of slender flanged reinforced concrete walls", Eng. Struct., 236 112105. https://doi.org/10.1016/j.engstruct.2021.112105.
  43. Kuramoto, H. and Nishiyama, I. (2004), "Seismic performance and stress transferring mechanism of through-column-type joints for composite reinforced concrete and steel frames", J. Struct. Eng., 130(2), 352-360. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(352).
  44. Lee, H.-J., Park, H.-G., Hwang, H.-J. and Kim, C.-S. (2019), "Cyclic lateral load test for RC column-steel beam joints with simplified connection details", J. Struct. Eng., 145(8), 4019075. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002369.
  45. Li, W., Li, Q.-n., Jiang, W.-s. and Jiang, L. (2011), "Seismic performance of composite reinforced concrete and steel moment frame structures - state-of-the-art", Compos. Part B: Eng., 42(2), 190-206. https://doi.org/10.1016/j.compositesb.2010.10.008.
  46. Li, W., Xiong, J., Wu, L. and Yang, K. (2020), "Experimental study and numerical analysis on seismic behavior of composite RCS frames", Struct. Concrete. https://doi.org/10.1002/suco.201900068.
  47. Lignos, D.G. and Krawinkler, H. (2010), "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading", J. Struct. Eng., 137(11), 1291-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376.
  48. Madandoust, R., Vatandoost, M. and Zehtab, M. (2018), "Evaluation of seismic behavior improvement in RCS connections", Asian J. Civil Eng., 19(6), 741-754. https://doi.org/10.1007/s42107-018-0055-y.
  49. Mazzoni, S., MaKebba, F. and Fenves, G. (2005), OpenSees command language manual. Berkeley (CA), Pacific Earthquake Engineering Center, University of California at Berkeley
  50. Medina, R.A. (2003), Seismic Demands for Nondeteriorating Frame Structures and Their Dependence on Ground Motions, Stanford University
  51. Mehanny, S.S.F., Cordova, P. and Deierlein, G.G. (2002). "Seismic design of composite moment frame buildings-Case studies and codes implications", Composite Construction in Steel and Concrete IV, Alberta, Canada, May 28-June 2, 2000.
  52. Men, J., Guo, Z. and Shi, Q. (2015a), "Experimental research on seismic behavior of novel composite RCS joints", Steel Compos. Struct.. 19(1), 209-221. https://doi.org/10.12989/scs.2015.19.1.209.
  53. Men, J., Zhang, Y., Guo, Z. and Shi, Q. (2015b), "Experimental research on seismic behavior of a composite RCS frame", Steel Compos. Struct., 18(4), 971-983. https://doi.org/10.12989/scs.2015.18.4.971.
  54. Menegotto, M. and Pinto, E. (1973). "Method of Analysis for Cyclically Loaded Reinforced Concrete Plane Frames Including Changes in Geometry and Non-Elastic Behavior of Elements under Combined Normal Force and Bending", IABSE Symposium, Lisbon, Portugal.
  55. Morota, M., Izaki, Y. and Imanaka, N. (1988), "Experimental Study on Reinforced Concrete Column to Steel Beam Joints of Tapered-Flange-Type Panels: Part 1 - Outline of Experiments", Architectural Institute of Japan, Japan.
  56. Nguyen, X.H., Le, D.D. and Nguyen, Q.-H. (2019), "Static behavior of novel RCS through-column-type joint: Experimental and numerical study", Steel Compos. Struct., 32(1), 111-126. https://doi.org/10.12989/scs.2019.32.1.111.
  57. Nguyen, X.H., Nguyen, Q.-H., Le, D.D. and Mirza, O. (2017), "Experimental study on seismic performance of new RCS connection", Structures, 9, 53-62. https://doi.org/10.1016/j.istruc.2016.09.006.
  58. NIST (2017), "Guidelines for Nonlinear Structural Analysis for Design of Buildings, Part IIa - Steel Moment Frames", National Institute of Standards and Technology, Washington, DC.
  59. Noguchi, H. and Uchida, K. (2004), "Finite element method analysis of hybrid structural frames with reinforced concrete columns and steel beams", J. Struct. Eng., 130(2), 328-335. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(328).
  60. Parra-Montesinos, G. and Wight, J.K. (2001), "Modeling shear behavior of hybrid RCS beam-column connections", J. Struct. Eng., 127(1), 3-11. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(3).
  61. Parra-Montesinos, G.J., Liang, X. and Wight, J.K. (2003), "Towards deformation-based capacity design of RCS beam-column connections", Eng. Struct., 25(5), 681-690. https://doi.org/10.1016/S0141-0296(02)00177-3.
  62. Petrini, L., Maggi, C., Priestley, M.N. and Calvi, G.M. (2008), "Experimental verification of viscous damping modeling for inelastic time history analyzes", J. Earthq. Eng., 12(S1), 125-145. https://doi.org/10.1080/13632460801925822.
  63. Sakaguchi, N. (1991), "Shear capacity of beam-column connection between steel beams and reinforced concrete columns", J. Struct. Constr. Eng. Archit. Inst. Japan, 428, 69-78.
  64. Scott, B.D., Park, R. and Priestly, M.J. (1982), "Stress-strain Behavior of Concrete Confined by Overlapping Hoops at and HigIl Strain Rates", ACI J., 79, 13-27. https://doi.org/10.14359/10875.
  65. Sheikh, T.M. (1987), "Moment connections between steel beams and concrete columns", Ph.D. Dissertation, The University of Texas at Austin, Austin, TX.
  66. Tanaka, H. (1990), "Effect of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns", PhD dissertation, University of Canterbury, New Zealand.
  67. Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthquake Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141.
  68. Veletsos, A. and Newmark, N.M. (1960). "Effect of inelastic behavior on the response of simple systems to earthquake motions".
  69. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., 30(5), 433-441. https://doi.org/10.12989/scs.2019.30.5.433.
  70. Xiong, L., Men, J., Ren, R. and Lei, M. (2018), "Experimental investigation on the seismic behavior of reinforced concrete column-steel beam subassemblies", Steel Compos. Struct., 28(4), 471-482. https://doi.org/10.12989/scs.2018.28.4.471.