DOI QR코드

DOI QR Code

Nonlinear free vibration impact on the smart small-scale thermo-mechanical sensors for monitoring the information in sports application

  • Yi Zhang (Jieyang polytechnic, Department of Art and Sports) ;
  • Maryam Bagheri (Hoonam Sanat Farnak, Engineering and technology company)
  • 투고 : 2021.05.16
  • 심사 : 2023.06.13
  • 발행 : 2024.03.25

초록

This paper presents an in-depth analysis of the nonlinear vibration of microbeams, with a particular emphasis on their application in sports monitoring systems. The research utilizes classical beam theory, modified couple stress theory, and von-Kármán nonlinear parameters to explore the behavior of microbeams. These microbeams are characterized by a non-uniform geometry, with materials that continuously change along the beam radius and a thickness that varies along the beam length. The main contribution lies in its exploration of the stability of smart sensors in sports structures, particularly those with non-uniform geometries. The research findings indicate that these non-uniform microbeams, when used in smart systems made of functionally graded temperature-dependent materials, can operate effectively in thermal environments. The smart system developed in this study demonstrates significant potential for use in sports applications, particularly in monitoring and gathering information. The insights gained from this research contribute to the understanding of the performance and optimization of microbeams in sports applications, particularly in the context of non-uniform geometries. This research, therefore, provides a foundation for the development of advanced, reliable, and efficient monitoring systems in sports applications.

키워드

참고문헌

  1. Adamian, A., Safari, K.H., Sheikholeslami, M., Habibi, M., Al-Furjan, M. and Chen, G. (2020), "Critical Temperature and Frequency Characteristics of GPLs-Reinforced Composite Doubly Curved Panel", Appl. Sci., 10(9), 3251. https://doi.org/10.3390/app10093251.
  2. Al-Furjan, M., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2020a), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 112990. https://doi.org/10.1016/j.compstruct.2020.112990.
  3. Al-Furjan, M., Fereidouni, M., Habibi, M., Abd Ali, R., Ni, J. and Safarpour, M. (2020b), "Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01177-7.
  4. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A. 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5.
  5. Bai, X., He, Y. and Xu, M. (2021), "Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form", IEEE Transact. Aeros. Electron. Syst., 57(5), 3279-3295. https://doi.org/10.1109/TAES.2021.3074204.
  6. Bai, X., Xu, M., Li, Q. and Yu, L. (2022), "Trajectory-battery integrated design and its application to orbital maneuvers with electric pump-fed engines", Adv. Space Res., 70(3), 825-841. https://doi.org/10.1016/j.asr.2022.05.014.
  7. Bergmayr, T., Kralovec, C. and Schagerl, M. (2021), "Vibration-based thermal health monitoring for face layer debonding detection in aerospace sandwich structures", Appl. Sci., 11(1). https://doi.org/10.3390/app11010211.
  8. Cai, L., Yan, S., Ouyang, C., Zhang, T., Zhu, J., Chen, L., Ma, X. and Liu, H. (2023), "Muscle synergies in joystick manipulation", Front Physiol., 14, 1282295. https://doi.org/10.3389/fphys.2023.1282295.
  9. Cao, J., Bu, F., Wang, J., Bao, C., Chen, W. and Dai, K. (2023a), "Reconstruction of full-field dynamic responses for large-scale structures using optimal sensor placement", J. Sound Vib., 554, 117693. https://doi.org/10.1016/j.jsv.2023.117693.
  10. Cao, J., Quek, S.-T., Xiong, H. and Yang, Z. (2023b), "Comparison of constrained unscented and cubature kalman filters for nonlinear system parameter identification", J. Eng. Mech., 149(11), 04023088. https://doi.org/10.1061/JENMDT.EMENG-7091.
  11. Cao, Y., Niu, B., Wang, H. and Zhao, X. (2024), "Event-based adaptive resilient control for networked nonlinear systems against unknown deception attacks and actuator saturation", Int. J. Robust Nonlinear Control. n/a(n/a). https://doi.org/10.1002/rnc.7231.
  12. Cheng, Q., Ali, H.E. and Albaijan, I. (2023a), "Optimization of the cross-section regarding the stability of nanostructures according to the dynamic analysis", Adv. Concrete Construct., 15(4), 215. https://doi.org/10.12989/acc.2023.15.4.215.
  13. Cheng, Q., Ali, H.E. and Albaijan, I. (2023b), "Optimization of the cross-section regarding the stability of nanostructures according to the dynamic analysis", Adv. Concrete Construct., 15(4), 215-228. https://doi.org/10.12989/acc.2023.15.4.215.
  14. Cui, W., Caracoglia, L., Zhao, L. and Ge, Y. (2023a), "Examination of occurrence probability of vortex-induced vibration of long-span bridge decks by Fokker-Planck-Kolmogorov equation", Struct. Safety. 105, 102369. https://doi.org/10.1016/j.strusafe.2023.102369.
  15. Cui, W., Zhao, L. and Ge, Y. (2023b), "Wind-induced buffeting vibration of long-span bridge considering geometric and aerodynamic nonlinearity based on reduced-order modeling", J. Struct. Eng., 149(11), 04023160. https://doi.org/10.1061/JSENDH.STENG-11543.
  16. Cui, W., Zhao, L., Ge, Y. and Xu, K. (2024), "A generalized van der Pol nonlinear model of vortex-induced vibrations of bridge decks with multistability", Nonlinear Dyn., 112(1), 259-272. https://doi.org/10.1007/s11071-023-09047-9.
  17. Dai, Y., Jiang, Z., Chen, K.-y., Zuo, D., Ali, H.E. and Albaijan, I. (2023), "Geometry impact on the stability behavior of cylindrical microstructures: Computer modeling and application for small-scale sport structures", Steel Compos. Struct., 48(4), 443. https://doi.org/10.12989/scs.2023.48.4.443.
  18. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 113599. https://doi.org/10.1016/j.compstruct.2021.113599.
  19. De Fazio, R., Mastronardi, V.M., De Vittorio, M. and Visconti, P. (2023), "Wearable sensors and smart devices to monitor rehabilitation parameters and sports performance: An overview", Sensors (Basel). 23(4). https://doi.org/10.3390/s23041856.
  20. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499.
  21. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141.
  22. Fu, L., Li, J., Yang, J., Liu, Y., He, C. and Chen, Y. (2023), "Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport", Adv. Nano Res., 15(5), 441-449. https://doi.org/10.12989/anr.2023.15.5.441.
  23. Gao, J., Koopialipoor, M., Armaghani, D.J., Ghabussi, A., Baharom, S., Morasaei, A., Shariati, A., Khorami, M. and Zhou, J. (2020), "Evaluating the bond strength of FRP in concrete samples using machine learning methods", Smart Struct. Syst., 26(4), 403-418. https://doi.org/10.12989/sss.2020.26.4.403.
  24. Ghabussi, A., Ashrafi, N., Shavalipour, A., Hosseinpour, A., Habibi, M., Moayedi, H., Babaei, B. and Safarpour, H. (2021), "Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter", Mech. Based Des. Struct. Machines. 49(5), 738-762. https://doi.org/10.1080/15397734.2019.1705166.
  25. Ghabussi, A., Habibi, M., NoormohammadiArani, O., Shavalipour, A., Moayedi, H. and Safarpour, H. (2020), "Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate", J. Vib. Control. 27(1-2), 101-118. https://doi.org/10.1177/1077546320923930.
  26. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527.
  27. Ghadiri, M., Shafiei, N. and Alavi, H. (2017a), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770.
  28. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016b), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A. 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5.
  29. Ghadiri, M., Shafiei, N. and Babaei, R. (2017b), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/scs.2017.25.2.197.
  30. Ghadiri, M., Shafiei, N. and Hossein Alavi, S. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337. https://jsm.arak.iau.ir/article_531824_c4e4e72f55b3a3a2cde7fda2f9b20ed3.pdf.
  31. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016c), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8.
  32. Guo, C., Hu, J., Hao, J., Celikovsky, S. and Hu, X. (2023a), "Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions", Kybernetika. 59(3), 342-364. https://doi.org/10.14736/kyb-2023-3-0342.
  33. Guo, C., Hu, J., Wu, Y. and Celikovsky, S. (2023b), "Nonsingular fixed-time tracking control of uncertain nonlinear pure-feedback systems with practical state constraints", IEEE Transact. Circuits Syst. I: Regular Papers. 70(9), 3746-3758. https://doi.org/10.1109/TCSI.2023.3291700.
  34. Hao, R.-B., Lu, Z.-Q., Ding, H. and Chen, L.-Q. (2022), "A nonlinear vibration isolator supported on a flexible plate: analysis and experiment", Nonlinear Dyn., 108(2), 941-958. https://doi.org/10.1007/s11071-022-07243-7.
  35. He, J.H., Liu, D.P., Chung, C.H. and Huang, H.H. (2020), "Infrared thermography measurement for vibration-based structural health monitoring in low-visibility harsh environments", Sensors (Basel). 20(24). https://doi.org/10.3390/s20247067.
  36. He, L. and Deng, Q. (2023), "Construction of sports engineering structures with high resistance to improve the quality of sports training", Struct. Eng. Mech., 86(2), 211-220. https://doi.org/10.12989/sem.2023.86.2.211.
  37. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.
  38. Huang, S., Zong, G., Zhao, N., Zhao, X. and Ahmad, A.M. (2024), "Performance recovery-based fuzzy robust control of networked nonlinear systems against actuator fault: A deferred actuator-switching method", Fuzzy Sets Syst., 480, 108858. https://doi.org/10.1016/j.fss.2024.108858.
  39. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  40. Jermsittiparsert, K., Ghabussi, A., Forooghi, A., Shavalipour, A., Habibi, M., won Jung, D. and Safa, M. (2022), "Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator", Mech. Based Des. Struct. Machines. 50(4), 1331-1353. https://doi.org/10.1080/15397734.2020.1748052.
  41. Jia, S., Niu, X., Jia, F. and Mahmoudi, T. (2023), "Advantages and disadvantages of renewable energy-oil-environmental pollution-from the point of view of nanoscience", Adv. Concrete Construct., 16(1), 69-78. https://doi.org/10.12989/acc.2023.16.1.069.
  42. Jin, H., Huang, S., Wang, B., Chen, X., Yang, B. and Qian, B. (2023a), "Soft sensor modeling for small data scenarios based on data enhancement and selective ensemble", Chemical Eng. Sci., 279, 118958. https://doi.org/10.1016/j.ces.2023.118958.
  43. Jin, H., Zhang, B. and Duan, X. (2023b), "Impact of nanocomposite material to counter injury in physical sport in the tennis racket", Adv. Nano Res., 14(5), 435-442. https://doi.org/10.12989/anr.2023.14.5.435.
  44. Kurpa, L., Awrejcewicz, J., Mazur, O. and Morachkovska, I. (2022), "Free vibrations of small-scale plates with complex shape based on the nonlocal elasticity theory", Acta Mechanica. 233(11), 5009-5019. https://doi.org/10.1007/s00707-022-03361-w.
  45. Lau, H.-K. and Clerk, A.A. (2018), "Fundamental limits and nonreciprocal approaches in non-Hermitian quantum sensing", Nature Commun., 9(1), 4320. https://doi.org/10.1038/s41467-018-06477-7.
  46. Lau, J.-S. and Li, Z. (2023), "Human functions in innovation and sustainable marketing", Adv. Concrete Construct., 16(2), 97. https://doi.org/10.12989/acc.2023.16.2.097.
  47. Li, J., Bin, N., Guo, F., Gao, X., Chen, R., Yao, H. and Zhou, C. (2023a), "Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development", Adv. Nano Res., 15(1), 49-57. https://doi.org/10.12989/anr.2023.15.1.049.
  48. Li, T., Li, J., Liu, X. and Luo, Y. (2022), "Magneto-thermo-elastic theoretical solution for functionally graded thick-walled tube under magnetic, thermal and mechanical loads based on voigt method", Materials. 15(18). https://doi.org/10.3390/ma15186345.
  49. Li, Y., Li, M., Kong, X., Baniasadi, A., Shaker, A.H. and Ali, H.E. (2023b), "Psychological capital to foster employee creativity in nanotechnology companies: the mediating role of JS and CSR", Adv. Nano Res., 15(3), 277-283. https://doi.org/10.12989/anr.2023.15.3.277.
  50. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w.
  51. Li, Z. (2023), "Resistance of concrete made of fibers in weight lifting slabs against impact in sports training", Struct. Eng. Mech., 86(3), 325-336. https://doi.org/10.12989/sem.2023.86.3.325.
  52. Li, Z., Peng, S. and Chen, G. (2023c), "Research on safety assessment and application effect of nanomedical products in physical education", Adv. Nano Res., 15(3), 253-261. https://doi.org/10.12989/anr.2023.15.3.253.
  53. Linnamo, V. (2023), "Sensor technology for sports monitoring", Sensors. 23(2). https://doi.org/10.3390/s23020572.
  54. Liu, L. and Zhang, X. (2022), "A focused review on the flexible wearable sensors for sports: From kinematics to physiologies", Micromachines (Basel). 13(8). https://doi.org/10.3390/mi13081356.
  55. Lu, L., She, G.-L. and Guo, X. (2021a), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  56. Lu, L., Wang, S., Li, M. and Guo, X. (2021b), "Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets", Compos. Struct., 272, 114231. https://doi.org/10.1016/j.compstruct.2021.114231.
  57. Lu, Z.-Q., Gu, D.-H., Ding, H., Lacarbonara, W. and Chen, L.-Q. (2020), "Nonlinear vibration isolation via a circular ring", Mech. Syst. Signal Processing. 136, 106490. https://doi.org/10.1016/j.ymssp.2019.106490.
  58. Lu, Z., Yang, T., Brennan, M.J., Liu, Z. and Chen, L.-Q. (2016), "Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness", J. Appl. Mech., 84(2). https://doi.org/10.1115/1.4034989.
  59. Ma, W.L., Cheng, C., Chen, X. and Li, X.F. (2021), "Free vibration of radially graded hollow cylinders subject to axial force via a higher-order shear deformation beam theory", Compos. Struct., 255, 112957. https://doi.org/10.1016/j.compstruct.2020.112957.
  60. Mahissi, M., Tong, X., Zhang, C., Deng, C., Wei, J. and Chen, S. (2021), "Study on the vibration performances for a high temperature fiber F-P accelerometer", Optical Fiber Technol., 62, 102471. https://doi.org/10.1016/j.yofte.2021.102471.
  61. Makinwa, K.A.A. (2010), "Smart temperature sensors in standard CMOS", Procedia Eng., 5, 930-939. https://doi.org/10.1016/j.proeng.2010.09.262.
  62. Mehditabar, A., Ansari Sadrabadi, S., Sepe, R., Armentani, E., Walker, J. and Citarella, R. (2020), "Influences of material variations of functionally graded pipe on the bree diagram", Appl. Sci., 10(8). https://doi.org/10.3390/app10082936.
  63. Meijer, G.C.M., Wang, G. and Heidary, A. (2018), "3 - Smart temperature sensors and temperature sensor systems", Smart Sensors MEMs, 57-85. https://doi.org/10.1016/B978-0-08-102055-5.00003-6.
  64. Miao, Y., Wang, X., Wang, S. and Li, R. (2023), "Adaptive switching control based on dynamic zero-moment point for versatile hip exoskeleton under hybrid locomotion", IEEE Transact. Ind. Electronics. 70(11), 11443-11452. https://doi.org/10.1109/TIE.2022.3229343.
  65. Moisello, E., Malcovati, P. and Bonizzoni, E. (2021), "Thermal sensors for contactless temperature measurements, occupancy detection, and automatic operation of appliances during the COVID-19 pandemic: A review", Micromachines (Basel). 12(2). https://doi.org/10.3390/mi12020148.
  66. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Nat. Sci., 35(1), 133-155. https://dergipark.org.tr/en/pub/sigma/issue/65585/1016455. 1016455
  67. Nuhu, A.A. and Safaei, B. (2022), "A comprehensive review on the vibration analyses of small-scaled plate-based structures by utilizing the nonclassical continuum elasticity theories", Thin-Wall. Struct., 179 109622. https://doi.org/10.1016/j.tws.2022.109622.
  68. Numanoglu, H.M. and Civalek, O . (2019), "On the dynamics of small-sized structures", Int. J. Eng. Sci., 145, 103164. https://doi.org/10.1016/j.ijengsci.2019.103164.
  69. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dentistry. 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002.
  70. Perry, J.I. and Walley, S.M. (2022), "Vibration-induced heating of energetic materials: A review", J. Dyn. Behavior Mater., 8(2), 162-177. https://doi.org/10.1007/s40870-021-00322-7.
  71. Rajasekaran, S. and Khaniki, H.B. (2018), "Bending, buckling and vibration analysis of functionally graded non-uniform nanobeams via finite element method", J. Brazil. Soc. Mech. Sci. Eng.,40(11), 549. https://doi.org/10.1007/s40430-018-1460-6.
  72. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J.Thermal Stresses. 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  73. Seckin, A.C ., Ates, B. and Seckin, M. (2023), "Review on warable technology in sports: Concepts, challenges and opportunities", Appl. Sci., 13(18). https://doi.org/10.3390/app131810399.
  74. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Mathem. Modelling. 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061.
  75. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. https://doi.org/10.22034/jsm.2019.563759.1273.
  76. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A. 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y.
  77. Shafiei, N. and She, G.-L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  78. Shahabinejad, E., Shafiei, N. and Ghadiri, M. (2018), "Influence of temperature change on modal analysis of rotary functionally graded nano-beam in thermal environment", J. Solid Mech., 10(4), 779-803. https://jsm.arak.iau.ir/article_545719.html.
  79. Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation", Thin-Wall. Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
  80. She, G.-L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Thermal Stresses. 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  81. She, G.-L., Yuan, F.-G., Karami, B., Ren, Y.-R. and Xiao, W.-S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005.
  82. She, G.-L., Yuan, F.-G. and Ren, Y.-R. (2018), "On wave propagation of porous nanotubes", Int. J. Eng. Sci., 130, 62-74. https://doi.org/10.1016/j.ijengsci.2018.05.002.
  83. She, G.-L., Yuan, F.-G., Ren, Y.-R. and Xiao, W.-S. (2017), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005.
  84. Shi, X., Yang, Y., Zhu, X. and Huang, Z. (2024), "Stochastic dynamics analysis of the rocket shell coupling system with circular plate fasteners based on spectro-geometric method", Compos. Struct., 329, 117727. https://doi.org/10.1016/j.compstruct.2023.117727.
  85. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A. 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9.
  86. Song, S., Zhang, T. and Zhui, Z. (2023a), "Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories", Steel Compos. Struct., 49(5), 487. https://doi.org/10.12989/scs.2023.49.5.487.
  87. Song, X., Yang, S., Wang, G., Lin, J., Wang, L., Meier, T. and Yang, W. (2023b), "Control of the electron dynamics in solid-state high harmonic generation on ultrafast time scales by a polarization-skewed laser pulse", Opt. Express. 31(12), 18862-18870. https://doi.org/10.1364/OE.491418.
  88. Soomro, A.M., Jawed, B., Qayoom, A., Hyder, H., Hussain, K., Iram, L., Waqas, M., Ahmed, F., Sattar, A., Almani, S. and Lim, J.H. (2023), "Textile-based flexible temperature sensors for wearable and sports applications", Physica Status Solidi(a). n/a(n/a), 2300523. https://doi.org/10.1002/pssa.202300523.
  89. Stojanovic, S., Gersak, J. and Uran, S. (2022), "Development of the smart T-shirt for monitoring thermal status of athletes", Autex Res. J., 23(2), 266-278. https://doi.org/10.2478/aut-2022-0005.
  90. Su, Z., Meng, J. and Su, Y. (2023), "Application of SiO 2 nanocomposite ferroelectric material in preparation of trampoline net for physical exercise", Adv. Nano Res., 14(4), 355-362. https://doi.org/10.12989/anr.2023.14.4.355.
  91. Touloukian, Y.S. and Ho, C.Y. (1977), Thermophysical Properties of Selected Aerospace Materials. Part 2. Thermophysical Properties of Seven Materials, CINDAS, Purdue Univ.,
  92. Turner, R.C., Fuierer, P.A., Newnham, R.E. and Shrout, T.R. (1994), "Materials for high temperature acoustic and vibration sensors: A review", Appl. Acoustics. 41(4), 299-324. https://doi.org/10.1016/0003-682X(94)90091-4.
  93. Wang, G., Peng, K., Zhou, H., Liu, G., Lou, Z. and Pan, F. (2023a), "Nanocomposite reinforced structures to deal with injury in physical sports", Adv. Nano Res., 14(6), 541-555. https://doi.org/10.12989/anr.2023.14.6.541.
  94. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bi-directional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elements. 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  95. Wang, P., Wu, X. and He, X. (2023b), "Vibration-theoretic approach to vulnerability analysis of nonlinear vehicle platoons", IEEE Transact. Intell. Transport. Syst., 24(10), 11334-11344. https://doi.org/10.1109/TITS.2023.3278574.
  96. Wu, W., Zhang, L., Wu, Y. and Zhao, H. (2024), "Adaptive saturated two-bit-triggered bipartite consensus control for networked MASs with periodic disturbances: a low-computation method", IMA J. Mathem. Control Inform., https://doi.org/10.1093/imamci/dnae002.
  97. Xin, L., Dui, G., Yang, S. and Zhou, D. (2015), "Solutions for behavior of a functionally graded thick-walled tube subjected to mechanical and thermal loads", Int. J. Mech. Sci., 98 70-79. https://doi.org/10.1016/j.ijmecsci.2015.03.016.
  98. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  99. Yan, Y., Li, J.-X., Ma, X.-F. and Wang, W.-Q. (2021), "Application and dynamical behavior of CNTs as fluidic nanosensors based on the nonlocal strain gradient theory", Sensors Actuators A: Phys., 330 112836. https://doi.org/10.1016/j.sna.2021.112836.
  100. Yang, Y. and Mao, Y. (2023), "Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction", Geomechanics and Engineering. 35(2), 181-194. https://doi.org/10.12989/gae.2023.35.2.181.
  101. Ye, M., HangKong, O., Lin, Y., Ynag, Q., Xu, Q., Chen, T., Sun, L. and Ma, L. (2023), "Electron transport properties of Y-type zigzag branched carbon nanotubes", Adv. Nano Res., 15(3), 263-275. https://doi.org/10.12989/.2023.15.3.263.
  102. Zare, R., Najaafi, N., Habibi, M., Ebrahimi, F. and Safarpour, H. (2020), "Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller", Smart Struct. Syst., 26(4), 469-480. https://doi.org/10.12989/sss.2020.26.4.469.
  103. Zhang, C. (2023), "The active rotary inertia driver system for flutter vibration control of bridges and various promising applications", Sci. China Technol. Sci., 66(2), 390-405. https://doi.org/10.1007/s11431-022-2228-0.
  104. Zhang, C., Liu, D.-D., Jiang, Z.-X., Song, Y., Luo, Q. and Wang, X. (2022), "Mechanism for the formation of natural fractures and their effects on shale oil accumulation in Junggar Basin, NW China", Int. J. Coal Geology. 254, 103973. https://doi.org/10.1016/j.coal.2022.103973.
  105. Zhang, C., Liu, D., Zhang, X., Spencer, C., Tang, M., Zeng, J., Jiang, S., Jolivet, M. and Kong, X. (2020), "Hafnium isotopic disequilibrium during sediment melting and assimilation", Geochem. Perspectives Lett., 12, 34-39. https://doi.org/10.7185/geochemlet.2001.
  106. Zhang, C., Zhu, D., Luo, Q., Liu, L., Liu, D., Yan, L. and Zhang, Y. (2017), "Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China", J. Asian Earth Sci., 146, 279-295. https://doi.org/10.1016/j.jseaes.2017.04.032.
  107. Zhang, L. and Huang, Y. (2023), "Investigating the role of nano in preserving the environment with new energy and preventing oil pollution", Adv. Nano Res., 15(6), 541-550. https://doi.org/10.12989/anr.2023.15.6.541.
  108. Zhang, P., Song, J. and Mahmoudi, T. (2023a), "Simulation and modeling for stability analysis of functionally graded non-uniform pipes with porosity-dependent properties", Steel Compos. Struct., 48(2), 235-250. https://doi.org/10.12989/scs.2023.48.2.235.
  109. Zhang, P., Song, J. and Mahmoudi, T. (2023b), "Simulation and modeling for stability analysis of functionally graded non-uniform pipes with porosity-dependent properties", Steel Compos. Struct., 48(2), 235-250. https://doi.org/10.12989/scs.2023.48.2.235.
  110. Zhang, W., Kang, S., Liu, X., Lin, B. and Huang, Y. (2023c), "Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate", J. Build. Eng., 71, 106522. https://doi.org/10.1016/j.jobe.2023.106522.
  111. Zhang, X., Li, J., Cui, Y., Habibi, M., Ali, H.E., Albaijan, I. and Mahmoudi, T. (2023a), "Static analysis of 2D-FG nonlocal porous tube using gradient strain theory and based on the first and higher-order beam theory", Steel Compos. Struct., 49(3), 293-306. https://doi.org/10.12989/SCS.2023.49.3.293.
  112. Zhang, Z., Du, J. and Mahmoudi, T. (2023b), "Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil", Adv. Nano Res., 15(4), 355-366. https://doi.org/10.12989/ANR.2023.15.4.355.
  113. Zhao, S., Liang, W., Wang, K., Ren, L., Qian, Z., Chen, G., Lu, X., Zhao, D., Wang, X. and Ren, L. (2023), "A multiaxial bionic ankle based on series elastic actuation with a parallel spring", IEEE Transact. Ind. Electronics. 1-13. https://doi.org/10.1109/TIE.2023.3310041.
  114. Zhao, Y., Zhu, Y. and Song, J. (2021), "Analytical modeling of the linear and nonlinear dynamic characteristics of the non-uniform axially functionally graded cylindrical beam based on the strain gradient theory", Waves Random Complex Media. 1-32. https://doi.org/10.1080/17455030.2021.1965672.
  115. Zhong, J., Fu, Y., Wan, D. and Li, Y. (2016), "Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model", Appl. Mathem. Modelling. 40(17), 7601-7614. https://doi.org/10.1016/j.apm.2016.03.031.
  116. Zou, Y., Zhong, M., Li, S., Qing, Z., Xing, X., Gong, G., Yan, R., Qin, W., Shen, J., Zhang, H., Jiang, Y., Wang, Z. and Zhou, C. (2023), "Flexible wearable strain sensors based on laser-induced graphene for monitoring human physiological signals", Polymers. 15(17). https://doi.org/10.3390/polym15173553.