DOI QR코드

DOI QR Code

A NUETROSOPHIC SINGLE ACCEPTANCE SAMPLING PLAN WITH QUALITY PARAMETERS

  • S. JAYALAKSHMI (Department of Statistics Bharathiar University) ;
  • M. GOPINATH (Department of Mathematics, Sri Krishna Arts and Science College)
  • Received : 2023.07.18
  • Accepted : 2023.09.20
  • Published : 2024.01.30

Abstract

In the Quality Control and inspection processes, the use of attribute sampling strategies is crucial. In this study, we incorporate the neutrosophic fuzzy acceptance sampling plan method to present a fresh approach to attribute sampling plans. Utilizing the benefits of neutrosophic fuzzy sets, the proposed sampling plan method models and assesses the acceptance standards for attribute sampling. We compare the suggested method to already-in-use attribute sampling techniques plans with new attribute six sigma sampling techniques plan is proposed in order to verified its efficacy. The outcomes show the neutrosophic fuzzy acceptance sampling plan's superiority in terms of its capacity to manage uncertainties, account for ambiguity, and produce more precise quality evaluation outputs.

Keywords

References

  1. D.C. Montgomery, Introduction to statistical quality control, Wiley, New York, 2017.
  2. S.-R. Cheng, B.-M. Hsu, M.-H. Shu, Fuzzy testing and selecting better processes performance, Ind. Manag. Data Syst. 107 (2007), 862-881. https://doi.org/10.1108/02635570710758761
  3. E.B. Jamkhaneh, B. Sadeghpour-Gildeh, G. Yari, Inspection error and its effects on single sampling plans with fuzzy parameters, Struct. Multidiscip. Optim. 43 (2011), 555-560. https://doi.org/10.1007/s00158-010-0579-6
  4. B. Sadeghpour Gildeh, E. Baloui Jamkhaneh, G. Yari, Acceptance single sampling plan with fuzzy parameter, Iran J. Fuzzy System 8 (2011), 47-55.
  5. E.B. Jamkhaneh, B.S. Gildeh, Acceptance double sampling plan using fuzzy poisson distribution, World Appl. Sci. J. 16 (2012), 1578-1588.
  6. E. Turanoglu, I. Kaya, C. Kahraman, Fuzzy acceptance sampling and characteristic curves, Int. J. Comput. Intell. System 5 (2012), 13-29. https://doi.org/10.1080/18756891.2012.670518
  7. E.B. Jamkhaneh, B.S. Gildeh, Sequential sampling plan using fuzzy SPRT, J. Intell. Fuzzy. System 25 (2013), 785-791. https://doi.org/10.3233/IFS-120684
  8. P. Divya, Quality interval acceptance single sampling plan with fuzzy parameter using Poisson distribution, Int. J. Adv. Res. Technology 1 (2012), 115-125.
  9. A. Venkateh, S. Elango, Acceptance sampling for the influence of TRH using crisp and fuzzy gamma distribution, Aryabhatta J. Math. Inform. 6 (2014), 119-124.
  10. C. Kahraman, E.T. Bekar, O. Senvar, A fuzzy design of single and double acceptance sampling plans, Kahraman C, Yanik S (eds) Intelligent decision making in quality management, Springer, Cham, 2016, 179-211.
  11. R. Afshari, B. Sadeghpour Gildeh, M. Sarmad, Fuzzy multiple deferred state attribute sampling plan in the presence of inspection errors, J. Intell. Fuzzy. System 33 (2017), 503-514. https://doi.org/10.3233/JIFS-161912
  12. R. Afshari, B.S. Gildeh, M. Sarmad, Multiple deferred state sampling plan with fuzzy parameter, Int. J. Fuzzy System 20 (2017), 1-9.
  13. S. Elango, A. Venkatesh, G.A. Sivakumar, fuzzy mathematical analysis for the effect of TRH using acceptance sampling plans, Int. J. Pure Appl. Math,. 117 (2017), 1-7.
  14. F. Smarandache, Neutrosophic logic-a generalization of the intuitionistic fuzzy logic, In: Multispace & multistructure. Neutrosophic transdisciplinarity, 4, 2010, 396.
  15. P. Majumdar, Neutrosophic sets and its applications to decision making, In: Acharjya D, Dehuri S, Sanyal S (eds) Computational intelligence for big data analysis, Springer, Cham, 2015, 97-115.
  16. Z. Aiwu, D. Jianguo, G. Hongjun, Interval valued neutrosophic sets and multi-attribute decision-making based on generalized weighted aggregation operator, J. Intell. Fuzzy System 29 (2015), 2697-2706. https://doi.org/10.3233/IFS-151973
  17. F. Smarandache, Introduction to neutrosophic statistics, Infinite Study, Ann. Arbor, 2014.
  18. J. Chen, J. Ye, S. Du, Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics, Symmetry 9 (2017), 208
  19. J. Chen et al, Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers, Symmetry 9 (2017), 123.
  20. M. Abdel-Basset et al, Multi-criteria group decision making based on neutrosophic analytic hierarchy process, J. Intell. Fuzzy System 33 (2017), 4055-4066. https://doi.org/10.3233/JIFS-17981
  21. M. Abdel-Basset, M. Mohamed, F. Smarandache, An extension of neutrosophic AHP-SWOT analysis for strategic planning and decision-making, Symmetry 10 (2018), 116.
  22. M. Abdel-Basset et al, Neutrosophic association rule mining algorithm for big data analysis, Symmetry 10 (2018), 106.
  23. M. Abdel-Basset, M. Mohamed, F. Smarandache, A hybrid neutrosophic groupANP-TOPSIS framework for supplier selection problems, Symmetry 10 (2018), 226.
  24. Nasrullah Khan, M. Gadde Srinivasa Rao, Rehan Ahmad Khan Sherwani, Ali Hussein AL-Marshadi, Muhammad Aslam, Uncertainty-based sampling plans for various statistical distributions, AIMS Mathematics 8 (2023), 14558-14571.
  25. Gurkan Isik, Ihsan kaya, Design of single and double acceptance sampling plans based on neutrosophic sets, Journal of Intelligent & Fuzzy Systems 42 (2021), 1-18. https://doi.org/10.3233/JIFS-219170
  26. Ghadah Alomani, Amer I. Al-Omar, Single acceptance sampling plans based on truncated lifetime tests for two-parameter Xgamma distribution with real data application, AIMS Mathematical and Biosciences Engineering 19 (2022), 13321-13336. https://doi.org/10.3934/mbe.2022624