DOI QR코드

DOI QR Code

Stomach clusterin as a gut-derived feeding regulator

  • Cherl NamKoong (Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine) ;
  • Bohye Kim (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Ji Hee Yu (Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Byung Soo Youn (Osteoneurogen, Inc.) ;
  • Hanbin Kim (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Evonne Kim (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • So Young Gil (Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine) ;
  • Gil Myoung Kang (Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine) ;
  • Chan Hee Lee (Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine) ;
  • Young-Bum Kim (Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School) ;
  • Kyeong-Han Park (Department of Anatomy and Cell Biology, Kangwon National University College of Medicine) ;
  • Min-Seon Kim (Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine) ;
  • Obin Kwon (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine)
  • Received : 2023.07.08
  • Accepted : 2023.09.25
  • Published : 2024.03.31

Abstract

The stomach has emerged as a crucial endocrine organ in the regulation of feeding since the discovery of ghrelin. Gut-derived hormones, such as ghrelin and cholecystokinin, can act through the vagus nerve. We previously reported the satiety effect of hypothalamic clusterin, but the impact of peripheral clusterin remains unknown. In this study, we administered clusterin intraperitoneally to mice and observed its ability to suppress fasting-driven food intake. Interestingly, we found its synergism with cholecystokinin and antagonism with ghrelin. These effects were accompanied by increased c-fos immunoreactivity in nucleus tractus solitarius, area postrema, and hypothalamic paraventricular nucleus. Notably, truncal vagotomy abolished this response. The stomach expressed clusterin at high levels among the organs, and gastric clusterin was detected in specific enteroendocrine cells and the submucosal plexus. Gastric clusterin expression decreased after fasting but recovered after 2 hours of refeeding. Furthermore, we confirmed that stomachspecific overexpression of clusterin reduced food intake after overnight fasting. These results suggest that gastric clusterin may function as a gut-derived peptide involved in the regulation of feeding through the gut-brain axis.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea funded by the Korean government (2020R1A2C3004843, 2022M3E5E8017213 to M-S.K., 2020R1C1C1008033 to O.K.).

References

  1. Field BC, Chaudhri OB and Bloom SR (2010) Bowels control brain: gut hormones and obesity. Nat Rev Endocrinol 6, 444-453
  2. Latorre R, Sternini C, De Giorgio R and Greenwood-Van Meerveld B (2016) Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil 28, 620-630
  3. Druce MR, Small CJ and Bloom SR (2004) Minireview: gut peptides regulating satiety. Endocrinology 145, 2660-2665
  4. Sawchenko PE (1983) Central connections of the sensory and motor nuclei of the vagus nerve. J Auton Nerv Syst 9, 13-26
  5. Berthoud HR and Neuhuber WL (2019) Vagal mechanisms as neuromodulatory targets for the treatment of metabolic disease. Ann N Y Acad Sci 1454, 42-55
  6. Schwartz GJ (2000) The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition 16, 866-873
  7. Moran TH and Kinzig KP (2004) Gastrointestinal satiety signals II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol 286, G183-188
  8. Date Y, Murakami N, Toshinai K et al (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123, 1120-1128
  9. Abbott CR, Monteiro M, Small CJ et al (2005) The inhibitory effects of peripheral administration of peptide YY (3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res 1044, 127-131
  10. Koda S, Date Y, Murakami N et al (2005) The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 146, 2369-2375
  11. Asakawa A, Inui A, Yuzuriha H et al (2003) Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology 124, 1325-1336
  12. Jones SE and Jomary C (2002) Clusterin. Int J Biochem Cell Biol 34, 427-431
  13. Rosenberg ME and Silkensen J (1995) Clusterin: physiologic and pathophysiologic considerations. Int J Biochem Cell Biol 27, 633-645
  14. Trougakos IP and Gonos ES (2002) Clusterin/apolipoprotein J in human aging and cancer. Int J Biochem Cell Biol 34, 1430-1448
  15. Aronow BJ, Lund SD, Brown TL, Harmony JA and Witte DP (1993) Apolipoprotein J expression at fluid-tissue interfaces: potential role in barrier cytoprotection. Proc Natl Acad Sci U S A 90, 725-729
  16. Shannan B, Seifert M, Leskov K et al (2006) Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ 13, 12-19
  17. Seo JA, Kang MC, Yang WM et al (2020) Apolipoprotein J is a hepatokine regulating muscle glucose metabolism and insulin sensitivity. Nat Commun 11, 2024
  18. Gil SY, Youn BS, Byun K et al (2013) Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway. Nat Commun 4, 1862
  19. Byun K, Gil SY, Namkoong C et al (2014) Clusterin/ApoJ enhances central leptin signaling through Lrp2-mediated endocytosis. EMBO Rep 15, 801-808
  20. Gibbs J, Young RC and Smith GP (1973) Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 84, 488-495
  21. Kissileff HR, Pi-Sunyer FX, Thornton J and Smith GP (1981) C-terminal octapeptide of cholecystokinin decreases food intake in man. Am J Clin Nutr 34, 154-160
  22. Date Y, Toshinai K, Koda S et al (2005) Peripheral interaction of ghrelin with cholecystokinin on feeding regulation. Endocrinology 146, 3518-3525
  23. Yu JH and Kim MS (2012) Molecular mechanisms of appetite regulation. Diabetes Metab J 36, 391-398
  24. Wang L, Martinez V, Barrachina MD and Tache Y (1998) Fos expression in the brain induced by peripheral injection of CCK or leptin plus CCK in fasted lean mice. Brain Res 791, 157-166
  25. Vange P, Bruland T, Doseth B et al (2017) The cytoprotective protein clusterin is overexpressed in hypergastrinemic rodent models of oxyntic preneoplasia and promotes gastric cancer cell survival. PLoS One 12, e0184514
  26. Bado A, Levasseur S, Attoub S et al (1998) The stomach is a source of leptin. Nature 394, 790-793
  27. Crawley JN and Corwin RL (1994) Biological actions of cholecystokinin. Peptides 15, 731-755
  28. Guilmeau S, Buyse M, Tsocas A, Laigneau JP and Bado A (2003) Duodenal leptin stimulates cholecystokinin secretion: evidence of a positive leptin-cholecystokinin feedback loop. Diabetes 52, 1664-1672
  29. Morton GJ, Cummings DE, Baskin DG, Barsh GS and Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443, 289-295
  30. Ahima RS and Osei SY (2001) Molecular regulation of eating behavior: new insights and prospects for therapeutic strategies. Trends Mol Med 7, 205-213
  31. Muller TD, Nogueiras R, Andermann ML et al (2015) Ghrelin. Mol Metab 4, 437-460
  32. Kounnas MZ, Loukinova EB, Stefansson S et al (1995) Identification of glycoprotein 330 as an endocytic receptor for apolipoprotein J/clusterin. J Biol Chem 270, 13070-13075
  33. Reddy KB, Karode MC, Harmony AK and Howe PH (1996) Interaction of transforming growth factor beta receptors with apolipoprotein J/clusterin. Biochemistry 35, 309-314
  34. Leeb C, Eresheim C and Nimpf J (2014) Clusterin is a ligand for apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR) and signals via the Reelin-signaling pathway. J Biol Chem 289, 4161-4172
  35. Kang SS, Kurti A, Wojtas A et al (2016) Identification of plexin A4 as a novel clusterin receptor links two Alzheimer's disease risk genes. Hum Mol Genet 25, 3467-3475
  36. Kupari J, Haring M, Agirre E, Castelo-Branco G and Ernfors P (2019) An atlas of vagal sensory neurons and their molecular specialization. Cell Rep 27, 2508-2523 e2504