DOI QR코드

DOI QR Code

Impact of Binder Combinations on Concrete Compressive Strength and Durability of Concrete Utilizing Coal Gasification Slag Aggregate

결합재 조합이 석탄 가스화 용융 슬래그 잔골재사용 콘크리트의 압축강도 및 내구성에 미치는 영향

  • Park, Sang-Won (Dept. of Architectural Engineering, Cheong-ju University) ;
  • Han, Jun-Hui (Dept. of Architectural Engineering, Cheong-ju University) ;
  • Han, Min-Cheol (Dept. of Architectural Engineering, Cheong-ju University)
  • Received : 2023.12.12
  • Accepted : 2024.02.19
  • Published : 2024.03.30

Abstract

This study examines the potential use of coal gasification slag (CGS) as a fine aggregate in concrete mixtures, considering different combinations of cement types and mix designs. Test results revealed that concrete flowability increases with changes in cement composition and CGS replacement ratio, while reducing air content necessitates higher doses of air-entraining agent. The initial compressive strength of concrete is notably high with cement, with greater long-term strength observed in combinations involving binary or ternary blended mineral admixtures. However, a slight decrease of 1-5% in compressive strength is noted with an increased CGS replacement ratio. Durability fluctuations, mostly minor, vary with cement type, generally showing positive results associated with the CGS replacement ratio. Nonetheless, reduced frost resistance is observed only in the TBC+CGS 50% mixture, suggesting air content's predominant influence over CGS's impact on frost resistance. Overall, CGS use as a fine aggregate of up to 50% poses no adverse effects on concrete's comprehensive physical properties and durability. However, additional research is necessary to devise methods for maintaining optimal air content in CGS materials.

Keywords

Acknowledgement

이 연구는 한국연구재단의 정부지원(과학기술정보통신부)으로 진행되었습니다. 과제번호 : NRF-2020R1A2C1015162

References

  1. Aperador, W., Mejia de Gutierrez, R., & Bastidas, D. M. (2009). Steel corrosion behaviour in carbonated alkali-activated slag concrete, Corrosion Science, 51(9), 2027-2033. https://doi.org/10.1016/j.corsci.2009.05.033
  2. Bakharev, T., Sanjayan, J. G., & Cheng, Y. B. (2001). Resistance of alkali-activated slag concrete to carbonation, Cement and Concrete Research, 31(9), 1277-1283. https://doi.org/10.1016/S0008-8846(01)00574-9
  3. Choi, I. K., & Han, M. C. (2020). "Analysis of Fundamental Properties and Durability of Concrete Using Coal Gasification Slag as a Combined Aggregate", Journal of the Korea Institute of Building Construction, 20(4), 331-338. https://doi.org/10.5345/JKIBC.2020.20.4.331
  4. Escalante, J. I., Gomez, L. Y., Johal, K. K., Mendoza, G., Mancha, H., & Mendez, J. (2001). Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions, Cement and Concrete Research, 31, 1403-1409.
  5. Han, M. C., Choi, I. K. (2020). A Study on the Fundamental and Heat of Hydration Properties of Fly Ash Replacement Concrete Mixed with Coal Gasification Slag for Fine Aggregate, Journal of the Architectural Institute of Korea Structure & Construction, 36(1), 155-162.
  6. Han, M. C., Kim, J., Choi, I. K., & Han, J. H. (2021). Reduction of Hydration Heat of Mass Concrete Using Coal Gasification Slag as Mixed Fine Aggregates, Korea Institute of Building Construction, 21(6), 551-562.
  7. Horiguchi, I., Shirai, A., Watanabe, M., & Sugihara, S. (2012). Fundamental study on concrete with coal gasification slag, Cement Science and Concrete Technology, 66(1), 615-621. https://doi.org/10.14250/cement.66.615
  8. Khunthongkeaw, J., Tangtermsirkul, S., & Leelawat, T. (2006). A study on carbonation depth prediction for fly ash concrete, Construction and Building Materials, 20(3), 744-753. https://doi.org/10.1016/j.conbuildmat.2005.01.052
  9. Kim, B. K., Lee, S. J., Chon, C. M., & Choi, H. S. (2017). Potential of Coal Gasification Slag as an Alkali-activated Cement, Journal of Korean Institute of Resources Recycling, 17(2), 38-47.
  10. Kitatsuji, M. (2006). Possibility of Using Coal Gasification Molten Slag as Fine Aggregate for Concrete. Japan Concrete Institute, 28(1), 35-43.
  11. Lee, B. Y., Lee, S. J., Kim, B. K., & Choi, H. G. (2020). Advanced Characterization of IGCC slag by automated SEM-EDS Analysis, Waste Management, 116, 140-146. https://doi.org/10.1016/j.wasman.2020.08.001
  12. Lee, S. S., Won, C., Kim, D. S., & Park, S. J. (2000). A Study on the Engineering Properties of Concrete Using Blast-furnace Slag Powder. Journal of the Korea Concrete Institute, 12(4), 49-58.
  13. Matsuura, Y., Kobayashi, Y., Ohnaka, A., & Nagataki, S. (2022). Examination of the Characteristics of Coal Gasification Slag Fine Aggregate and its Effect on the Strength Characteristics of Concrete, Journal of the Society of Materials Science, Japan, 71(10), 847-852.
  14. Miyamura, Y., Iwanami, M., & Nakayama, K. (2020). Investigation on Strength Characteristics of Concrete Using IGCC Slag and Its Durability under Marine Environment, Cement Science and Concrete Technology, 74(1), 207-214. https://doi.org/10.14250/cement.74.207
  15. Nagataki, S., Abe, M., & Matsuura, T. (2021). Overview of establishment of JIS A 5011-5 (coal gasification slag aggregate), Japan Concrete Institute, 59(6), 496-501. https://doi.org/10.3151/coj.59.6_496
  16. Park, K. T., Han, M. C., & Hyun, S. Y. (2019). Analysis the use of Concrete Fine Aggregates of Coal Gasification Slag, Korean Recycled Construction Resources Institute, 7(2), 101-8.
  17. Park, K. T., Han, M. C., Hyun, S. Y. (2019). Engineering Properties of Concrete using of Coal Gasification Slag as the Fine Aggregates, Korean Institute of Building Construction, 7(3), 194-201.
  18. Park, K. T., Han, M. C., & Hyun, S. Y. (2019). Properties of Lean Mixed Mortar with Various Replacement ratio of Coal Gasification Slag. Korean Institute of Building Construction, 19(5), 391-399.
  19. Ravina, D., & Mehta, P. K. (1986). Properties of fresh concrete containing large amount of fly ash, Cement and Concrete Research, 16, 227-238. https://doi.org/10.1016/0008-8846(86)90139-0
  20. Sin, D. G. (2019). A Study on the Possibility of Coal Gasification Slag as a Concrete admixture, MS Thesis, Korea National University of Transportation, Korea [in Korean].
  21. Yamanaka, T., Fujiwara, H., Maruoka, M., & Kobayashi, R. (2017). Experiment Study On Properties Of Mortar And Concrete Containing Molten Slag From Integrated Coal Gasification Combined Cycle As Fine Aggregate, Cement Science and Concrete Technology, 71(1), 603-609. https://doi.org/10.14250/cement.71.603