DOI QR코드

DOI QR Code

Modeling of vibration protection by shape memory alloy parts with an account of latent heat

  • Fedor S. Belyaev (Laboratory of Mathematical Methods in Mechanics of Materials, Institute for Problems in Mechanical Engineering of the RAS) ;
  • Margarita E. Evard (Saint Petersburg State University) ;
  • Aleksandr E. Volkov (Saint Petersburg State University) ;
  • Maria S. Starodubova (Saint Petersburg State University)
  • Received : 2023.07.27
  • Accepted : 2024.02.10
  • Published : 2024.03.25

Abstract

Modeling of vibrations of a rotating pendulum with working shape memory alloy rod has been performed in the frames of a microstructural model taking into account the latent heat release, absorption and the heat exchange during direct and reverse martensitic transformation. It has been shown that the influence of the latent heat, the rate of preliminary deviation of the pendulum from the equilibrium, the rate of heating and cooling can have a significant impact on the vibrations and damping characteristics of the system.

Keywords

Acknowledgement

This work has been supported by the grant of the Russian Science Foundation, RSF 23-21-00167.

References

  1. Armattoe, K.M., Bouby, C., Haboussi, M. and Ben Zineb, T. (2016), "Modeling of latent heat effects on phase transformation in shape memory alloy thin structures", Int. J. Solids Struct., 88, 283-295. https://doi.org/10.1016/j.ijsolstr.2016.02.024
  2. Belyaev, S.P. and Volkov, A.E. (2001), "Control of vibrations in TiNi by periodic martensitic transformations", J. Struct. Control, 8(2), 265-278. https://doi.org/10.1002/stc.4300080208
  3. Belyaev, S.P., Volkov, A.E. and Voronkov, A.V. (1999), "Mechanical oscillations in TiNi under synchronized martensite transformations", J. Eng. Mater. Technol., 121(1) 105-107. https://doi.org/10.1115/1.2815990
  4. Belyaev, S.P., Inochkina, I.V. and Volkov, A.E. (2003), "Modeling of vibration control, damping and isolation by shape memory alloy parts", Proceedings of the 3rd World Conference on Structural Control (3WCSC) (edited by F. Casciati), 2, 779-789.
  5. Belyaev, F.S., Evard, M.E., Ostropiko, E.S., Razov, A.I. and Volkov, A.E. (2019), "Aging effect on the one-way and two-way shape memory in TiNi-based alloys", Shape Memory Superelast., 5(3), 218-229. https://doi.org/10.1007/s40830-019-00226-5
  6. Belyaev, F.S., Evard, M.E. and Volkov, A.E. (2022), "Effect of plastic deformation on the martensitic transformations in TiNi alloy", Smart Struct. Syst., Int. J., 29(2), 311-319. https://doi.org/10.12989/sss.2022.29.2.311
  7. Boyd, J. and Lagoudas, A. (1996), "A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy", Int. J. Plast., 12(6), 805-842. http://dx.doi.org/10.1016/S0749-6419(96)00030-7
  8. Casciati, S. (2019), "SMA-based devices: insight across recent proposals toward civil engineering application", Smart Struct. Syst., Int. J., 24(1), 111-125. https://doi.org/10.12989/sss.2019.24.1.111
  9. Casciati, F., Faravelli, L. and Petrini, L. (1998), "Energy Dissipation in Shape Memory Alloys", Comput.-Aided Civil Infrastr. Eng., 13(6), 433-442. http://doi.org/10.1111/0885-9507.00121
  10. Evard, M.E. and Volkov, A.E. (1999), "Modeling of martensite accommodation effect on mechanical behavior of shape memory alloys", J. Eng. Mater. Technol., 121(1), 102-104. https://doi.org/10.1115/1.2815989
  11. Gao, X., Huang, M. and Brinson, L.C. (2000), "A multivariant model for SMAs Part 1. Crystallographic issues for single crystal model", Int. J. Plastic., 16(10-11), 1345-1369. https://doi.org/10.1016/S0749-6419(00)00013-9
  12. Graesser, E.J. and Cozzarelli, F.A. (1991), "Shape memory alloys as new materials for a seismic isolation", J. Eng. Mech., 117(11), 2590-2608. http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:11(2590)
  13. He, Y.J. and Sun, Q.P. (2010), "Frequency-dependent temperature evolution in NiTi shape memory alloy under cyclic loading", Smart Mater. Struct., 19(11), 115014. http://dx.doi.org/10.1088/0964-1726/19/11/115014
  14. Helbert, G., Saint-Sulpice, L., Chirani, S.A., Dieng, L., Lecompte, T., Calloch, S. and Pilvin, P. (2017), "A uniaxial constitutive model for superelastic NiTi SMA including R-phase and martensite transformations and thermal effects", Smart Mater. Struct., 26(2), 025007. http://dx.doi.org/10.1088/1361-665X/aa5141
  15. Helbert, G., Volkov, A., Evard, M., Dieng, L. and Chirani, S.A. (2020), "On the understanding of damping capacity in SMA: From the material thermomechanical behaviour to the structure response", J. Intell. Mater. Syst. Struct., 32(11), 1167-1184. https://doi.org/10.1177/1045389X20974453
  16. Huang, M., Gao, X. and Brinson, L.C. (2000), "A multivariant micromechanical model for SMAs, Part 2. Polycrystal model", Int. J. Plastic., 16(10-11), 1371-1390. https://doi.org/10.1016/S0749-6419(00)00014-0
  17. Jin, F., Zhao, C., Xu, P., Xue, J. and Lin, J. (2024), "Nonlinear vibration of SMA hybrid composite beams actuated by embedded pre-stretched SMA wires with tension-bending coupling effect", J. Sound Vib., 568, 117964. https://doi.org/10.1016/j.jsv.2023.117964
  18. Kan, Q., Yu, C., Kang, G., Li, J. and Yan, W. (2016), "Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy", Mech. Mater., 97, 48-58. https://doi.org/10.1016/j.mechmat.2016.02.011
  19. Kato, H. (2021), "Latent heat storage capacity of NiTi shape memory alloy", J. Mater. Sci., 56(13), 8243-8250. https://doi.org/10.1007/s10853-021-05777-6
  20. Kaup, A., Altay, O. and Klinkel, S. (2021), "Strain amplitude effects on the seismic performance of dampers utilizing shape memory alloy wires", Eng. Struct., 244, 112708. https://doi.org/10.1016/j.engstruct.2021.112708
  21. Khan, M.M., Lagoudas, D.C., Mayes, J.J. and Henderson, B.K. (2004), "Pseudoelastic sma spring elements for passive vibration isolation: Part I-modeling", J. Intell. Mater. Syst. Struct., 15(6), 415-441. https://doi.org/10.1177/1045389X04041529
  22. Lagoudas, D.C., Khan, M.M., Mayes, J.J., Henderson, B.K. (2004), "Pseudoelastic SMA spring elements for passive vibration isolation: Part II-Simulations and experimental correlations", J. Intell. Mater. Syst. Struct., 15(6), 443-470. https://doi.org/10.1177/1045389X04041530
  23. Leo, P.H., Shield, T.W. and Bruno, O.P. (1993), "Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires", Acta Metall. Mater., 41(8), 2477-2485. https://doi.org/10.1016/0956-7151(93)90328-P
  24. Liang, C. and Rogers, C.A. (1990), "One-dimensional thermomechanical constitutive relations for shape memory materials", J. Intell. Mater. Syst. Struct., 1(4), 207-234. https://doi.org/10.1177/1045389X9000100205
  25. Likhachev, V.A. (1995), "Structure-analytical theory of martensitic unelasticity", J. Phys. IV, 05(C8), 137-142. https://doi.org/10.1051/jp4:1995816
  26. Louia, F., Michaelis, N., Schutze, A., Seelecke, S. and Motzki, P. (2023), "A unified approach to thermo-mechano-caloric-characterization of elastocaloric materials", J. Phys. Energy, 5(4), 045014. https://doi.org/10.1088/2515-7655/acfb39
  27. Meisner, L.L and Sivokha, V.P. (2004), "The effect of applied stress on the shape memory behavior of TiNi-based alloys with different consequences of martensitic transformations", Physica B: Condens. Matt., 344, 93-98. https://doi.org/10.1016/j.physb.2003.08.128
  28. McCormick, P., Liu, Y. and Miyazaki, S. (1993), "Intrinsic thermal-mechanical behaviour associated with the stress-induced martensitic transformation in NiTi", Mater. Sci. Eng.: A, 167(1-2), 51-56. https://doi.org/10.1016/0921-5093(93)90336-D
  29. Patoor, E., Eberhardt, A. and Berveiller, M. (1996), "Micromechanical modelling of superelasticity in shape memory alloys", J. Phys. IV, 06(C1), 277-292. https://doi.org/10.1051/jp4:1996127
  30. Pence, T.J. (1999), "Mathematical modeling of shape memory alloys", Manside Project. Workshop Proc., II, 45-57.
  31. Pieczyska, E.A., Tobushi, H. and Kulasinski, K. (2013), "Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera", Smart Mater. Struct., 22, 035007. http://dx.doi.org/10.1088/0964-1726/22/3/035007
  32. Regany, D., Majos, F., Barrau, J., Rosell, J., Ibanez, M., Frechette, L.G. and Vilarrubi, M. (2022), "Design and test of shape memory alloy fins for self-adaptive liquid cooling device", Appl. Thermal Eng., 206, 118010. https://doi.org/10.1016/j.applthermaleng.2021.118010
  33. Qiu, C., Gong, Z., Peng, C. and Li, H. (2020), "Seismic vibration control of an innovative self-centering damper using confined SMA core", Smart Struct. Syst., Int. J., 25(2), 241-254. https://doi.org/10.12989/sss.2020.25.2.241
  34. Song, D., Kang, G., Yu, C., Kan, Q. and Zhang, C. (2019), "Torsional whole-life transformation ratchetting under pure-torsional and non-proportional multiaxial cyclic loadings of NiTi SMA at human-body temperature: Experimental observations and life-prediction model", J. Mech. Behavior Biomed. Mater., 94, 267-278. https://doi.org/10.1016/j.jmbbm.2019.03.010
  35. Sun, Q.-P. and Lexcellent, C. (1996), "On the unified micromechanics constitutive description of one-way and two-way shape memory effects", J. Phys. IV, 06(C1), 367-375. https://doi.org/10.1051/jp4:1996135
  36. Tabrizikahou, A., Kuczma, M., Lasecka-Plura, M., Farsangi, E.N., Noori, M., Gardoni, P. and Li, S. (2022), "Application and modelling of Shape-Memory Alloys for structural vibration control: State-of-the-art review", Constr. Build. Mater., 342(B), 127975. https://doi.org/10.1016/j.conbuildmat.2022.127975
  37. Tadesse, Y., Thayer, N. and Priya, S. (2010), "Tailoring the response time of shape memory alloy wires through active cooling and pre-stress", J. Intell. Mater. Syst. Struct., 21(1), 19-40. http://dx.doi.org/10.1177/1045389X09352814
  38. Tanaka, K. and Iwasaki, R. (1985), "A phenomenological theory of transformation superplasticity", Eng. Fract. Mech., 21(4), 709-720. http://dx.doi.org/10.1016/0013-7944(85)90080-3
  39. Tanaka, K., Nishimura, F., Hayashi, T., Tobushi, H. and Lexcellent, C. (1995), "Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads", Mech. Mater., 19(4), 281-292. http://dx.doi.org/10.1016/0167-6636(94)00038-I
  40. Tiwari, N.D., Gogoi, A., Hazra, B. and Wang, Q. (2021), "A shape memory alloy-tuned mass damper inerter system for passive control of linked-SDOF structural systems under seismic excitation", J. Sound Vib., 494, 115893. https://doi.org/10.1016/j.jsv.2020.115893
  41. Torra, V., Isalgue, A., Lovey, F.C. and Sade, M. (2015), "Shape memory alloys as an effective tool to damp oscillations", J. Therm. Anal. Calorim., 119, 1475-1533. https://doi.org/10.1007/s10973-015-4405-7
  42. Trochu, F. and Terriault, P. (1998), "Nonlinear modeling of hysteresis material laws by dual kriging and application", Comput. Methods Appl. Mech. Eng., 151, 545-558. https://doi.org/10.1016/S0045-7825(97)00165-5
  43. Volkov, A.E. and Casciati, F. (2001), "Simulation of dislocation and transformation plasticity in shape memory alloy polycrystals", Shape memory alloys. Advances in modelling and applications, (Auricchio, F., Faravelli, L., Magonette, G., Torra, V., Eds.), CIMNE, Barcelona, pp. 88-104.
  44. Volkov, A.E., Evard, M.E., Vikulenkov, A.V. and Uspenskiy, E.S. (2013), "Simulation of vibration isolation by shape memory alloy springs using a microstructural model of shape memory alloy", Mater. Sci. Forum, Vol. 738, pp. 150-154. https://doi.org/10.4028/www.scientific.net/MSF.738-739.150
  45. Volkov, A.E., Evard, M.E., Red'kina, K.V., Vikulenkov, A.V., Makarov, V.P., Moisheev, A.A., Markachev, N.A. and Uspenskiy, E.S. (2014), "Simulation of payload vibration protection by shape memory alloy parts", J. Mater. Eng. Perform., 23, 2719-2726. https://doi.org/10.1007/s11665-014-1084-7
  46. Volkov, A.E., Belyaev, F.S., Evard, M.E. and Volkova, N.A. (2015), "Model of the evolution of deformation defects and irreversible strain at thermal cycling of stressed TiNi alloy specimen", In: MATEC Web Conferences, Vol. 33, p. 03013. https://doi.org/10.1051/matecconf/20153303013
  47. Wang, Z., Hang, G., Li, J., Wang, Y. and Xiao, K. (2008), "A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin", Sensors Actuators A: Phys., 144(2), 354-360. https://doi.org/10.1016/j.sna.2008.02.013
  48. Wilde, K., Gardoni, P. and Fujino, Y. (2000), "Base isolation system with shape memory alloy device for elevated highway bridges", Eng. Struct. 22(3), 222-229. http://dx.doi.org/10.1016/S0141-0296(98)00097-2
  49. Yan, Z., Zhu, J.N., Borisov, E., Riemslag, T., Scott, S.P., Hermans, M., Jovanova, J. and Popovich, V. (2023), "Superelastic response and damping behavior of additively manufactured Nitinol architectured materials", Addit. Manuf., 68, 103505. https://doi.org/10.1016/j.addma.2023.103505
  50. Yin, H., He, Y. and Sun, Q. (2014), "Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy", J. Mech. Phys. Solids, 67, 100-128. https://doi.org/10.1016/j.jmps.2014.01.013