DOI QR코드

DOI QR Code

Compact electromagnetic vibration suppressor and energy harvester; an experimental study

  • Aref Afsharfard (Department of Mechanical Engineering, Ferdowsi University of Mashhad) ;
  • Hooman Zoka (Department of Mechanical Engineering, Concordia University) ;
  • Kyung Chun Kim (Eco-friendly Smart Ship Parts Technology Innovation Center, Pusan National University)
  • 투고 : 2021.10.19
  • 심사 : 2024.01.28
  • 발행 : 2024.03.25

초록

In this study, an electromagnetic dynamic vibration suppressor and energy harvester is designed and studied. In this system, a gear mechanism is used to convert the linear motion to continuous rotary motion. Governing equations of motion for the system are derived and validated using the experimental results. Effects of changing the main parameters of the presented system, such as mass ratio, stiffness ratio and gear ratio on the electro-mechanical behavior of system are investigated. Moreover, using so-called Weighted Cost Function, the optimum parameters of the system are obtained. Finally, it is shown that the presented electromagnetic dynamic vibration absorber not only can reduce the undesired vibration of the main system but also it can harvest acceptable electrical energy.

키워드

과제정보

This work was supported by Brain Pool Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (RS-2023-00304351). This work was also supported by the National Research Foundation of Korea (NRF) grant, which is funded by the Korean government (MSIT) (No. 2020R1A5A8018822).

참고문헌

  1. Adhikari, S., Friswell, M.I., Litak, G. and Khodaparast, H.H. (2016), "Despign and analysis of vibration energy harvesters based on peak response statistics", Smart Mater. Struct., 25(6), p. 065009. https://doi.org/10.1088/0964-1726/25/6/065009
  2. Afsharfard, A. (2018), "Application of nonlinear magnetic vibroimpact vibration suppressor and energy harvester", Mech. Syst. Signal Process., 98(Supplement C), 371-381. https://doi.org/10.1016/j.ymssp.2017.05.010
  3. Afsharfard, A. and Farshidianfar, A. (2014), "Application of single unit impact dampers to harvest energy and suppress vibrations", J. Intell. Mater. Syst. Struct., 25(14), 1850-1860. https://doi.org/10.1177/1045389X14535012
  4. Amini, Y., Heshmati, M., Fatehi, P. and Habibi, S.E. (2017), "Piezoelectric energy harvesting from vibrations of a beam subjected to multi-moving loads", Appl. Mathe. Modell., 49, 1-16. https://doi.org/10.1016/j.apm.2017.04.043
  5. Cammarano, A., Burrow, S.G., Barton, D.A.W., Carrella, A. and Clare, L.R. (2010), "Tuning a resonant energy harvester using a generalized electrical load", Smart Mater. Struct., 19(5), p. 055003. https://doi.org/10.1088/0964-1726/19/5/055003
  6. Clough, R.W. and Penzien, J. (2003), Dynamics of Structures, Computers & Structures, New York, USA.
  7. Donelan, J.M., Li, Q., Naing, V., Hoffer, J.A., Weber, D.J. and Kuo, A.D. (2008), "Biomechanical energy harvesting: generating electricity during walking with minimal user effort", Science, 319(5864), p. 807. https://doi.org/10.1126/science.1149860
  8. Frahm, H. (1911), Device for Damping Vibrations of Bodies.
  9. Gonzalez-Buelga, A., Clare, L.R., Neild, S.A., Burrow, S.G. and Inman, D.J. (2015), "An electromagnetic vibration absorber with harvesting and tuning capabilities", Struct. Control Health Monitor., 22(11), 1359-1372. https://doi.org/10.1002/stc.1748
  10. Halim, M.A., Cho, H. and Park, J.Y. (2015), "Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester", Energy Convers. Manage., 106, 393-404. https://doi.org/10.1016/j.enconman.2015.09.065
  11. Hendijanizadeh, M., Sharkh, S.M., Elliott, S.J. and MoshrefiTorbati, M. (2013), "Output power and efficiency of electromagnetic energy harvesting systems with constrained range of motion", Smart Mater. Struct., 22(12), p. 125009. https://doi.org/10.1088/0964-1726/22/12/125009
  12. Karimi, M., Karimi, A.H., Tikani, R. and Ziaei-Rad, S. (2016), "Experimental and theoretical investigations on piezoelectricbased energy harvesting from bridge vibrations under travelling vehicles", Int. J. Mech. Sci., 119(Supplement C), 1-11. https://doi.org/10.1016/j.ijmecsci.2016.09.029
  13. Kim, P. and Seok, J. (2015), "Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester", Mech. Mach. Theory, 94, 41-63. https://doi.org/10.1016/j.mechmachtheory.2015.08.002
  14. Li, Z., Zuo, L., Kuang, J. and Luhrs, G. (2013), "Energyharvesting shock absorber with a mechanical motion rectifier", Smart Mater. Struct., 22(2), p. 025008. 10.1088/0964-1726/22/2/025008
  15. Lin, T., Wang, J.J. and Zuo, L. (2018), "Efficient electromagnetic energy harvester for railroad transportation", Mechatronics, 53, 277-286. https://doi.org/10.1016/j.mechatronics.2018.06.019
  16. Madinei, H., Khodaparast, H.H., Adhikari, S. and Friswell, M.I. (2016), "Design of MEMS piezoelectric harvesters with electrostatically adjustable resonance frequency", Mech. Syst. Signal Process., 81, 360-374. https://doi.org/10.1016/j.ymssp.2016.03.023
  17. Marian, L. and Giaralis, A. (2017), "The tuned mass-damperinerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting", Smart Struct. Syst., Int. J., 19(6), 665-678. https://doi.org/10.12989/sss.2017.19.6.665
  18. Pirisi, A., Mussetta, M., Grimaccia, F. and Zich, R.E. (2013), "Novel speed-bump design and optimization for energy harvesting from traffic", IEEE Transact. Intell. Transport. Syst., 14(4), 1983-1991. https://doi.org/10.1109/TITS.2013.2272650
  19. Salvi, J. and Giaralis, A. (2016), "Concept study of a novel energy harvesting-enabled tuned mass-damper-inerter (EH-TMDI) device for vibration control of harmonically-excited structures", J. Phys.: Conference Series, 744(1), p. 012082. https://doi.org/10.1088/1742-6596/744/1/012082
  20. Shen, W., Zhu, S. and Zhu, H. (2016), "Experimental study on using electromagnetic devices on bridge stay cables for simultaneous energy harvesting and vibration damping", Smart Mater. Struct., 25(6), p. 065011. https://doi.org/10.1088/0964-1726/25/6/065011
  21. Takeya, K., Sasaki, E. and Kobayashi, Y. (2016), "Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems", J. Sound Vib., 361(Supplement C), 50-65. https://doi.org/10.1016/j.jsv.2015.10.002
  22. Tang, X. and Zuo, L. (2012), "Simultaneous energy harvesting and vibration control of structures with tuned mass dampers", J. Intell. Mater. Syst. Struct., 23(18), 2117-2127. https://doi.org/10.1177/1045389X12462644
  23. Wang, F. and Hansen, O. (2014), "Electrostatic energy harvesting device with out-of-the-plane gap closing scheme", Sensors Actuat. A: Phys., 211(Supplement C), 131-137. https://doi.org/10.1016/j.sna.2014.02.027
  24. Wang, J., Lin, T. and Zuo, L. (2013), "High efficiency electromagnetic energy harvester for railroad application", Proceedings of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, OR, USA, August. https://doi.org/10.1115/DETC2013-12770
  25. Wang, L., Todaria, P., Pandey, A., O'Connor, J., Chernow, B. and Zuo, L. (2016), "An electromagnetic speed bump energy harvester and its interactions with vehicles", IEEE/ASME Transact. Mechatron., 21(4), 1985-1994. https://doi.org/10.1109/TMECH.2016.2546179
  26. Wang, H., Jasim, A. and Chen, X. (2018), "Energy harvesting technologies in roadway and bridge for different applications - A comprehensive review", Appl. Energy, 212, 1083-1094. https://doi.org/10.1016/j.apenergy.2017.12.125
  27. Williams, C.B. and Yates, R.B. (1996), "Analysis of a microelectric generator for microsystems", Sensors Actuat. A: Phys., 52(1), 8-11. https://doi.org/10.1016/0924-4247(96)80118-X
  28. Zhang, X., Zhang, Z., Pan, H., Salman, W., Yuan, Y. and Liu, Y. (2016a), "A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads", Energy Convers. Manage., 118, 287-294. https://doi.org/10.1016/j.enconman.2016.04.012
  29. Zhang, Y., Wang, T., Zhang, A., Peng, Z., Luo, D., Chen, R. and Wang, F. (2016b), "Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency", Rev. Scientif. Instrum., 87(12), p. 125001. https://doi.org/10.1063/1.4968811
  30. Zhang, Y., Chen, H., Guo, K., Zhang, X. and Li, S.E. (2017), "Electro-hydraulic damper for energy harvesting suspension: Modeling, prototyping and experimental validation", Appl. Energy, 199, 1-12. https://doi.org/10.1016/j.apenergy.2017.04.085
  31. Zhongjie, L., Zuo, L., Kuang, J. and Luhrs, G. (2013), "Energyharvesting shock absorber with a mechanical motion rectifier", Smart Mater. Struct., 22(2), p. 025008. https://doi.org/10.1088/0964-1726/22/2/025008
  32. Zhu, S., Shen, W., Zhu, H.P. and Xu, Y.L. (2016), "Electromagnetic energy harvesting from structural vibrations during earthquakes", Smart Struct. Syst., Int. J., 18, 449-470. https://doi.org/10.12989/sss.2016.18.3.449
  33. Zoka, H. and Afsharfard, A. (2019), "Double stiffness vibration suppressor and energy harvester: an experimental study", Mech. Syst. Signal Process., 121, 1-13. https://doi.org/10.1016/j.ymssp.2018.11.020