DOI QR코드

DOI QR Code

A combined spline chirplet transform and local maximum synchrosqueezing technique for structural instantaneous frequency identification

  • Ping-Ping Yuan (School of Civil Engineering and Architecture, Jiangsu University of Science and Technology) ;
  • Zhou-Jie Zhao (School of Civil Engineering and Architecture, Jiangsu University of Science and Technology) ;
  • Ya Liu (The First Construction Engineering Company Ltd. of China Construction Second Engineering Bureau) ;
  • Zhong-Xiang Shen (School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology)
  • Received : 2023.04.07
  • Accepted : 2024.01.26
  • Published : 2024.03.25

Abstract

Spline chirplet transform and local maximum synchrosqueezing are introduced to present a novel structural instantaneous frequency (IF) identification method named local maximum synchrosqueezing spline chirplet transform (LMSSSCT). Namely spline chirplet transform (SCT), a transform is firstly introduced based on classic chirplet transform and spline interpolated kernel function. Applying SCT in association with local maximum synchrosqueezing, the LMSSSCT is then proposed. The index of accuracy and Rényi entropy show that LMSSSCT outperforms the other time-frequency analysis (TFA) methods in processing analytical signals, especially in the presence of noise. Numerical examples of a Duffing nonlinear system with single degree of freedom and a two-layer shear frame structure with time-varying stiffness are used to verify the effectiveness of structural IF identification. Moreover, a nonlinear supported beam structure test is conducted and the LMSSSCT is utilized for structural IF identification. Numerical simulation and experimental results demonstrate that the presented LMSSSCT can effectively identify the IFs of nonlinear structures and time-varying structures with good accuracy and stability.

Keywords

Acknowledgement

Financial support to complete this study is provided in part by the National Natural Science Foundation of China (Grant No. 51979130), Natural Science Foundation of Jiangsu Province (Grant No. BK20191460), Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 20KJB560016) and Postdoctoral Research Funding Program of Jiangsu Province (Grant No. 2021K562C). The results and opinions expressed in this paper are those of the authors only and they don't necessarily represent those of the sponsors.

References

  1. Chen, H., Lu, L., Xu, D., Kang, J. and Chen, X. (2017), "The synchrosqueezing algorithm based on generalized S-transform for high-precision time-frequency analysis", Appl. Sci., 7, 769. https://doi.org/10.3390/app7080769
  2. Chen, P., Wang, K., Zuo, MJ. and Wei, D. (2019), "An ameliorated synchroextracting transform based on upgraded local instantaneous frequency approximation", Measurement, 148, 106953. https://doi.org/10.1016/j.measurement.2019.106953
  3. Daubechies, I., Lu, J.F. and Wu, H.T. (2011), "Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool", Appl. Comput. Harmon. A, 30(2), 243-261. https://doi.org/10.1016/j.acha.2010.08.002
  4. Guan, Y. and Feng, Z. (2022), "Adaptive linear chirplet transform for analyzing signals with crossing frequency trajectories", IEEE Trans. Ind. Electron., 69(8), 8396-8410. https://doi.org/10.1109/TIE.2021.3097605
  5. Guan, Y., Liang, M. and Necsulescu, D.S. (2019), "Velocity synchronous linear chirplet transform", IEEE Trans. Ind. Electron., 66(8), 6270-6280. https://doi.org/10.1109/TIE.2018.2873520
  6. He, Y., Jiang, Z., Hu, M. and Li, Y. (2021), "Local maximum synchrosqueezing chirplet transform: An effective tool for strongly nonstationary signals of gas turbine", IEEE T. Instrum. Meas., 70, 1-14. https://doi.org/10.1109/TIM.2021.3076588
  7. Li, Z., Gao, J., Li, H., Zhang, Z., Liu, N. and Zhu, X. (2020a), "Synchroextracting transform: The theory analysis and comparisons with the synchrosqueezing transform", Signal Process., 166, 107243. https://doi.org/10.1016/j.sigpro.2019.107243
  8. Li, M.F., Wang, T.Y., Chu, F.L., Han, Q.K., Qin, Z.Y. and Zuo, MJ. (2020b), "Scaling-basis chirplet transform", IEEE Trans. Ind. Electron., 68(9), 8777-8788. https://doi.org/10.1109/TIE.2020.3013537
  9. Liu, H. and Xiang, J. (2018), "Kernel regression residual decomposition-based synchroextracting transform to detect faults in mechanical systems", ISA. Trans., 87, 251-263. https://doi.org/10.1016/j.isatra.2018.12.004
  10. Liu, J.L., Zheng, J.Y., Wei, X.J., Liao, F.Y. and Luo, Y.P. (2018a), "A new instantaneous frequency extraction method for nonstationary response signals in civil engineering structures", J. Low Freq. Noise Vib. Active Control, 37(4), 834-848. https://doi.org/10.1177/1461348418790534
  11. Liu, J.L., Wei, X.J., Qiu, R.H., Zheng, J.Y., Zhu, Y.J. and Laory, I. (2018b), "Instantaneous frequency extraction in time-varying structures using a maximum gradient method", Smart Struct. Syst., Int. J., 22(3), 359-368. https://doi.org/10.12989/sss.2018.22.3.359
  12. Liu, J.L., Zheng, J.Y., Wei, X.J., Ren, W.X. and Laory, I. (2019), "A combined method for instantaneous frequency identification in low frequency structures", Eng. Struct., 194, 370-383. https://doi.org/10.1016/j.engstruct.2019.05.057
  13. Meng, Z., Lv, M., Liu, Z. and Fan, F. (2021), "General synchroextracting chirplet transform: Application to the rotor rub-impact fault diagnosis", Measurement, 169, 108523. https://doi.org/10.1016/j.measurement.2020.108523
  14. Pham, D.H. and Meignen, S. (2017), "High-order synchrosqueezing transform for multicomponent signals analysis-with an application to gravitational gravitational-wave signal", IEEE T. Signal Process., 65(12), 3168-3177. https://doi.org/10.1109/TSP.2017.2686355
  15. Sahu, G., Dash, S. and Biswal, B. (2020), "Time-frequency analysis of power quality disturbances using synchroextracting transform", Int. T. Electr. Energy, 30(4), e12278. https://doi.org/10.1002/2050-7038.12278
  16. Shi, Z., Yang, X., Li, Y. and Yu, G. (2021), "Wavelet-based synchroextracting transform: An effective TFA tool for machinery fault diagnosis", Control Eng. Pract., 114(5), 104884. https://doi.org/10.1016/j.conengprac.2021.104884
  17. Sony, S. and Sadhu, A. (2020), "Synchrosqueezing transformbased identification of time-varying structural systems using multi-sensor data", J. Sound Vib., 486, 115576. https://doi.org/10.1016/j.jsv.2020.115576
  18. Wang, Z.C., Ren, W.X. and Liu, J.L. (2013), "A synchrosqueezed wavelet transform enhanced by extended analytical mode decomposition method for dynamic signal reconstruction", J. Sound Vib., 332(22), 6016-6028. https://doi.org/10.1016/j.jsv.2013.04.026
  19. Wang, C., Zhang, J. and Zhu, H.P. (2020), "A combined method for time-varying parameter identification based on variational mode decomposition and generalized Morse wavelet", Int. J. Struct. Stab. Dyn., 20(7), 1-24. https://doi.org/10.1142/S0219455420500777
  20. Xin, Y., Hao, H. and Li, J. (2019), "Time-varying system identification by enhanced empirical wavelet transform based on synchroextracting transform", Eng. Struct., 196, 109313. https://doi.org/10.1016/j.engstruct.2019.109313
  21. Yang, Y., Peng, Z.K., Meng, G. and Zhang, W.M. (2011), "Splinekernelled chirplet transform for the analysis of signals with time-varying frequency and its application", IEEE Trans. Ind. Electron., 59(3), 1612-1621. https://doi.org/10.1109/TIE.2011.2163376
  22. Yang, Y., Zhang, W., Peng, Z. and Meng, G. (2013), "Multicomponent signal analysis based on polynomial chirplet transform", IEEE Trans. Ind. Electron., 60(9), 3948-3956. https://doi.org/10.1109/TIE.2012.2206331
  23. Yang, Y., Peng, Z.K., Dong, X.J., Zhang, W.M. and Meng, G. (2014), "General parameterized time-frequency transform", IEEE Trans. Signal Process., 62(11), 2751-2764. https://doi.org/10.1109/TSP.2014.2314061
  24. Yu, G. and Zhou, Y. (2016), "General linear chirplet transform", Mech. Syst. Signal Pr., 70-71, 958-973. https://doi.org/10.1016/j.ymssp.2015.09.004
  25. Yu, G., Yu, M. and Xu, C. (2017), "Synchroextracting transform", IEEE Trans. Ind. Electron., 64(10), 8042-8054. https://doi.org/10.1109/TIE.2017.2696503
  26. Yu, G., Wang, Z. and Zhao, P. (2018), "Multisynchrosqueezing transform", IEEE Trans. Ind. Electron., 66(7), 5441-5455. https://doi.org/10.1109/TIE.2018.2868296
  27. Yu, G., Wang, Z., Zhao, P. and Li, Z. (2019), "Local maximum synchrosqueezing transform: An energy-concentrated timefrequency analysis tool", Mech. Syst. Signal Pr., 117, 537-552. https://doi.org/10.1016/j.ymssp.2018.08.006
  28. Yuan, P.P., Cheng, X.L., Wang, H.H., Zhang, J., Shen, Z.X. and Ren, W.X. (2021), "Structural instantaneous frequency extraction based on improved multi-synchrosqueezing generalized S-transform", Smart Struct. Syst., Int. J., 28(5), 675-687. https://doi.org/10.12989/sss.2021.28.5.675
  29. Yuan, P.P., Zhang, J., Feng, J.Q., Wang, H.H., Ren, W.X. and Wang, C. (2022), "An improved time-frequency analysis method for structural instantaneous frequency identification based on generalized S-transform and synchroextracting transform", Eng. Struct., 252, 113657. https://doi.org/10.1016/j.engstruct.2021.113657
  30. Zhu, X., Zhang, Z., Gao, J., Li, B. and Wen, G. (2019), "Synchroextracting chirplet transform for accurate IF estimate and perfect signal reconstruction", Digit. Signal Process., 93, 172-186. https://doi.org/10.1016/j.dsp.2019.07.015