Acknowledgement
This work is supported by the National Key Research and Development Program of China (2021YFE0112200), Shanghai Municipal Transportation Commission (JT2023-KY-003), Key Research Support Project of SRIBS (KY10000038.20230065), the Japan Society for Promotion of Science (Kakenhi No. 18K04438), the Tohoku Institute of Technology research Grant, and the Housing & UrbanRural Construction Commission of Shanghai Municipality (2023-002-029).
References
- Amezquita-Sanchez, J.P. and Adeli, H. (2016), "Signal processing techniques for vibration-based health monitoring of smart structures", Arch. Computat. Methods Eng., 23(1), 1-15. https://doi.org/10.1007/s11831-014-9135-7
- Bao, Y., Chen, Z., Wei, S., Xu, Y., Tang, Z. and Li, H. (2019), "The state of the art of data science and engineering in structural health monitoring", Engineering, 5, 234-242. https://doi.org/10.1016/j.eng.2018.11.027
- Bengio, Y., Lamblin, P., Popovici, D. and Larochelle, H. (2007), "Greedy layer-wise training of deep networks", Adv. Neural Inform. Process. Syst., 19, 153. https://www.iro.umontreal.ca/~lisa/pointeurs/BengioNips2006All.pdf
- Cardini, A.J. and DeWolf, J.T. (2009), "Long-term structural health monitoring of a multi-girder steel composite bridge using strain data", Struct. Health Monitor., 8(1), 47-58. https://doi.org/10.1177/1475921708094789
- Chen, Z.C., Li, H. and Bao, Y.Q. (2019), "Analyzing and modeling inter-sensor relationships for strain monitoring data and missing data imputation: a copula and functional data-analytic approach", Struct. Health Monitor., 18(4), 1168-1188. https://doi.org/10.1177/1475921718788703
- Costa, B.J.A. and Figueiras, J.A. (2012), "Evaluation of a strain monitoring system for existing steel railway bridges", J. Constr. Steel Res., 72, 179-191. https://doi.org/10.1016/j.jcsr.2011.12.006
- Cross, E.J., Koo, K.Y., Brownjohn, J.M.W. and Worden, K. (2013), "Long-term monitoring and data analysis of the Tamar Bridge", Mech. Syst. Signal Process., 35(1-2), 16-34. https://doi.org/10.1016/j.ymssp.2012.08.026
- Ding, Y.L., Wang, G.X., Hong, Y., Song, Y.S., Wu, L.Y. and Yue, Q. (2017), "Detection and localization of degraded truss members in a steel arch bridge based on correlation between strain and temperature", J. Perform. Constr Facil., 31(5), 04017082. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001075
- Ding, Y., Yang, K., Jiang, H., Wang, M. and Wan, C. (2022), "Data abnormal detection using bidirectional long-short neural network combined with artificial experience", Smart Struct. Syst., Int. J., 29(1), 117-127. https://doi.org/ 10.12989/sss.2022.29.1.117
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Digest, 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Fan, G., Li, J. and Hao, H. (2019), "Lost data recovery for structural health monitoring based on convolutional neural networks", Struct. Control Health Monitor., 26(10), e2433. https://doi.org/10.1002/stc.2433
- Farrar, C.R., Cornwell, P.J., Doebling, S.W. and Prime, M.B. (2000), "Structural health monitoring studies of the alamosa canyon and I-40 Bridges", Los Alamos National Lab., NM, USA.
- Huang, H.B., Yi, T.H., Li, H.N. and Liu, H. (2018), "New representative temperature for performance alarming of bridge expansion joints through temperature-displacement relationship", J. Bridge Eng., 23(7), 04018043. https://ascelibrary.org/doi/10.1061/%28ASCE%29BE.1943-5592.0001258
- Huang, H.B., Yi, T.H., Li, H.N. and Liu, H. (2020), "Strain-based performance warning method for bridge main girders under variable operating conditions", J. Bridge Eng., 25(4), 04020013. https://ascelibrary.org/doi/10.1061/%28ASCE%29BE.1943-5592.0001538
- Jiang, H., Wan, C., Yang, K., Ding, Y. and Xue, S. (2021), "Modeling relationships for field strain data under thermal effects using functional data analysis", Measurement, 177, 109279. https://doi.org/10.1016/j.measurement.2021.109279
- Kim, S.W., Yun, D.W., Park, D.U., Chang, S.J. and Park, J.B. (2021), "Estimation of live load distribution factor for a PSC I girder bridge in an ambient vibration test", Appl. Sci., 11(22), 11010. https://doi.org/10.3390/app112211010
- Kingma, D.P. and Welling, M. (2014), "Auto-encoding variational bayes", Proceedings of the 2nd International Conference on Learning Representations. https://arxiv.org/abs/1312.6114v10
- Ko, J.M. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12), 1715-1725. https://doi.org/10.1016/j.engstruct.2005.02.021
- Kuok, S.C. and Yuen, K.V. (2016), "Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework", Smart Struct. Syst., Int. J., 17(3), 445-470. https://doi.org/10.12989/sss.2016.17.3.445
- Li, H., Li, S., Ou, J. and Li, H. (2010), "Modal identification of bridges under varying environmental conditions: Temperature and wind effects", Struct. Control Health Monitor., 17(5), 495-512. https://doi.org/10.1002/stc.319
- Mallat, S.G. (1989), "A theory for multiresolution signal decomposition: the wavelet representation", IEEE Transact. Pattern Anal. Mach. Intell., 11(7), 674-693. https://doi.org/10.1109/34.192463
- Nagarajaiah, S. and Yang, Y.C. (2017), "Modeling and harnessing sparse and low-rank data structure: a new paradigm for structural dynamics, identification, damage detection, and health monitoring", Struct. Control Health Monitor., 24(1), e1851. https://doi.org/10.1002/stc.1851
- Ni, Y.Q., Xia, H.W., Wong, K.Y. and Ko, J.M. (2012), "In-service condition assessment of bridge deck using long-term monitoring data of strain response", J. Bridge Eng., 17(6), 876-885. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000321
- Noel, A.B., Abdaoui, A., Elfouly, T., Ahmed, M.H., Badawy, A. and Shehata, M.S. (2017), "Structural health monitoring using wireless sensor networks: a comprehensive survey", IEEE Commun. Surveys Tutorials, 19(3), 1403-1423. https://doi.org/10.1109/COMST.2017.2691551
- Peng, Z., Li, J. and Hao, H. (2022), "Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios", Smart Struct. Syst., Int. J., 29(1), 167-179. https://doi.org/10.12989/sss.2022.29.1.167
- Petersen, O.W., Oiseth, O., Nord, T.S. and Lourens, E. (2018), "Estimation of the full-field dynamic response of a floating bridge using Kalman-type filtering algorithms", Mech. Syst. Signal Process., 107, 12-28. https://doi.org/10.1016/j.ymssp.2018.01.022
- Shajihan, S.A.V., Wang, S., Zhai, G. and Spencer Jr, B.F. (2022), "CNN based data anomaly detection using multi-channel imagery for structural health monitoring", Smart Struct. Syst., Int. J., 29(1), 181-193. https://doi.org/ 10.12989/sss.2022.29.1.181
- Sohn, H. (2007), "Effects of environmental and operational variability on structural health monitoring", Philosoph. Transact. Royal Soc. A-Mathe. Phys. Eng. Sci, 365(1851), 539-560. https://doi.org/10.1098/rsta.2006.1935
- Taysi, N and Abid, S. (2015), "Temperature distributions and variations in concrete box-girder bridges: experimental and Finite Element Parametric Studies", Adv. Struct. Eng., 18(4), 469-486. https://doi.org/10.1260/1369-4332.18.4.469
- Wan, H.P. and Ni, Y.Q. (2018), "Bayesian modeling approach for forecast of structural stress response using structural health monitoring data", J. Struct. Eng., 144(9), 04018130. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002085
- Wang, G.X., Ding, Y.L., Sun, P., Wu, L.L. and Yue, Q. (2015), "Assessing static performance of the dashengguan yangtze bridge by monitoring the correlation between temperature Field and Its Static Strains", Mathe. Probl. Eng., 2015, 946907. https://doi.org/10.1155/2015/946907
- Wang, H., Zhu, Q., Zou, Z., Xing, C., Feng, D. and Tao, T. (2020), "Temperature distribution analysis of steel box-girder based on long-term monitoring data", Smart Struct. Syst., Int. J., 25(5), 593-604. https://doi.org/ 10.12989/sss.2020.25.5.593
- Xia, Y., Chen, B., Weng, S., Ni, Y.Q. and Xu, Y.L. (2012), "Temperature effect on vibration properties of civil structures: A literature review and case studies", J. Civil Struct. Health Monitor., 2(1), 29-46. https://doi.org/10.1007/s13349-011-0015-7
- Xia, Q., Cheng, Y., Zhang, J. and Zhu, F. (2017), "In-service condition assessment of a long-span suspension bridge using temperature-induced strain data", J. Bridge Eng., 22(3), 04016124. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001003
- Yan, A.M., Kerschen, G., DoBoe, P. and Golinval, G. (2005a), "Structural damage diagnosis under varying environmental conditions - Part I: A linear analysis", Mech. Syst. Signal Process., 19(4), 847-864. https://doi.org/10.1016/j.ymssp.2004.12.002
- Yan, A.M., Kerschen, G., DoBoe, P. and Golinval, G. (2005b), "Structural damage diagnosis under varying environmental conditions - Part II: local PCA for non-linear cases", Mech. Syst. Signal Process, 19(4), 865-880. https://doi.org/10.1016/j.ymssp.2004.12.003
- Yang, K., Ding, Y., Sun, P., Zhao, H. and Geng, F. (2019), "Modeling of temperature time-lag effect for concrete box-girder bridges", Appl. Sci., 9(16), 3225. https://doi.org/10.3390/app9163255
- Yarnold, M.T. and Moon, F.L. (2015), "Temperature-based structural health monitoring baseline for long-span bridges", Eng. Struct., 86, 157-167. https://doi.org/10.1016/j.engstruct.2014.12.042
- Zapico-Valle, J.L., Garcia-Diegues, M. and Alonso-Camblor, R. (2013), "Nonlinear modal identification of a steel frame", Eng. Struct., 56, 246-259. https://doi.org/10.1016/j.engstruct.2013.04.026
- Zhang, Y.L., Kurata, M. and Lynch, J.P. (2017), "Long-term modal analysis of wireless structural monitoring data from a suspension bridge under varying environmental and operational conditions: system design and automated modal analysis", J. Eng. Mech., 143(4), 04016124. https://ascelibrary.org/doi/10.1061/%28ASCE%29EM.1943-7889.0001198
- Zhao, H., Ding, Y., Li, A., Ren, Z. and Yang, K. (2020), "Live-load strain evaluation of the prestressed concrete box-girder bridge using deep learning and clustering", Struct. Health Monitor., 19(4), 1051-1063. https://doi.org/10.1177/1475921719875630