DOI QR코드

DOI QR Code

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton (Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Young-Joo Lee (Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 투고 : 2023.01.07
  • 심사 : 2023.12.04
  • 발행 : 2024.03.25

초록

The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.

키워드

과제정보

This research was supported by a grant (2022-MOIS63-003 (RS-2022-ND641021)) of Cooperative Research Method and Safety Management Technology in National Disaster funded by Ministry of Interior and Safety (MOIS, Korea).

참고문헌

  1. Abbasnia, R., Shayanfar, M. and Khodam, A. (2014), "Reliability-based design optimization of structural systems using a hybrid genetic algorithm", Struct. Eng. Mech., Int. J., 52(6), 1099-1120. https://doi.org/10.12989/sem.2014.52.6.1099
  2. Aoues, Y. and Chateauneuf, A. (2008), "Reliability-Based Optimization of Structural Systems by Adaptive Target Safety - Application to RC Frames", Struct. Saf., 30(2), 144-161. https://doi.org/10.1016/j.strusafe.2006.10.002
  3. Aoues, Y. and Chateauneuf, A. (2009), "Benchmark study of numerical methods for reliability-based design optimization", Struct. Multidiscip. Optim., 41(2), 277-294. https://doi.org/10.1007/S00158-009-0412-2
  4. Chakri, A., Yang, X-S., Khelif, R. and Benouaret, M. (2017), "Reliability-Based Design Optimization Using the Directional Bat Algorithm", Neural. Comput. Appl., 30(8), 2381-2402. https://doi.org/10.1007/S00521-016-2797-3
  5. Chen, C.T., Chen, M.H. and Horng, W.T. (2014), "A cell evolution method for reliability-based design optimization", Appl. Soft Comput., 15(1), 67-79. https://doi.org/10.1016/J.ASOC.2013.10.020
  6. Dubourg, V., Sudret, B. and Bourinet, J.M. (2011), "Reliability-based design optimization using kriging surrogates and subset simulation", Struct. Multidiscip. Optim., 44(5), 673-690. https://doi.org/10.1007/S00158-011-0653-8
  7. EN 10220 European Standard (2002), Seamless and welded steel tubes - Dimensions and masses per unit length. European Committee for standardization; Rue de Stassart, Belgium.
  8. Faes, M.G.R. and Valdebenito, M.A. (2020), "Fully decoupled reliability-based design optimization of structural systems subject to uncertain loads", Comput. Methods Appl. Mech. Eng., 371(1), 1-17. https://doi.org/10.1016/J.CMA.2020.113313
  9. Ghiasi, R. and Ghasemi, M.R. (2018), "Optimization-based method for structural damage detection with consideration of uncertainties- a comparative study", Smart Struct. Syst., Int. J., 22(5), 561-574. https://doi.org/10.12989/sss.2018.22.5.561
  10. Gholizad, A., Golafshani, A.A. and Akrami, V. (2012), "Structural reliability of offshore platforms considering fatigue damage and different failure scenarios", Ocean Eng., 46(1), 1-8. https://doi.org/10.1016/J.OCEANENG.2012.01.033
  11. Hamzehkolaei, N.S., Miri, M. and Rashki, M. (2015), "An enhanced simulation-based design method coupled with metaheuristic search algorithm for accurate reliability-based design optimization", Eng. Comput., 32(3), 477-495. https://doi.org/10.1007/S00366-015-0427-9
  12. Hobbacher, A.F., Hicks, S.J., Karpenko, M., Thole, F. and Uy, B. (2016), "Transfer of Australasian Bridge Design to Fatigue Verification System of Eurocode 3", J. Constr. Steel Res., 122(1), 532-542. https://doi.org/10.1016/J.JCSR.2016.03.023
  13. Honarmandi, P., Zu, J.W. and Behdinan, K. (2007), "Reliability-Based Design Optimization of Cantilever Beams Under Fatigue Constraint", AIAA Journal, 45(11), 2737-2746. https://doi.org/10.2514/1.24807
  14. Hu, W., Choi, K.K. and Cho, H. (2016), "Reliability-based design optimization of wind turbine blades for fatigue life under dynamic wind load uncertainty", Struct. Multidiscip. Optim., 54(4), 953-970. https://doi.org/10.1007/S00158-016-1462-X
  15. Ibrahim, M.H., Kharmanda, G. and Charki, A. (2014), "Reliability-based design optimization for fatigue damage analysis", Int. J. Adv. Manuf. Technol., 76(5), 1021-1030. https://doi.org/10.1007/S00170-014-6325-2
  16. Jia, G. and Taflanidis, A.A. (2013), "Non-parametric stochastic subset optimization for optimal-reliability design problems", Comput. Struct., 126(1), 86-99. https://doi.org/10.1016/J.COMPSTRUC.2012.12.009
  17. Kim, J. and Song, J. (2021), "Quantile Surrogates and Sensitivity by Adaptive Gaussian Process for Efficient Reliability-Based Design Optimization", Mech. Syst. Signal Pr., 161(1) 1-17. https://doi.org/10.1016/J.YMSSP.2021.107962
  18. Karamchandani, A., Dalane, J.I. and Bjerager, P. (1992), "Systems reliability approach to fatigue of structures", J. Struct. Eng., 118(3), 684-700. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:3(684)
  19. Kim, D.S., Ok, S.Y., Song, J. and Koh, H.M. (2013), "System reliability analysis using dominant failure modes identified by selective searching technique", Reliab. Eng. Syst. Saf., 119, 316-331. https://doi.org/10.1016/J.RESS.2013.02.007
  20. Kohli, M. and Arora, S. (2018), "Chaotic grey wolf optimization algorithm for constrained optimization problems", J. Comput. Des. Eng., 5(4), 458-472. https://doi.org/10.1016/j.jcde.2017.02.005
  21. Lee, Y.-J. and Kang, W.-H. (2014), "Sensitivity analysis of fatigue-induced sequential failure using system reliability approaches", Proceedings of the 4th International Symposium on Life-Cycle Civil Engineering (IALCCE 2014), Tokyo, Japan, November.
  22. Lee, Y.-J. and Song, J. (2011), "Risk analysis of fatigue-induced sequential failures by branch-and-bound method employing system reliability bounds", J. Eng. Mech., 137(12), 807-821. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000286
  23. Lee, Y.-J. and Song, J. (2012), "Finite-element-based system reliability analysis of fatigue-induced sequential failures", Reliab. Eng. Syst. Saf., 108(1), 131-141. https://doi.org/10.1016/J.RESS.2012.05.007
  24. Li, M. and Wang, Z. (2019), "Surrogate model uncertainty quantification for reliability-based design optimization", Reliab. Eng. Syst. Saf., 192(1), 1-12. https://doi.org/10.1016/j.ress.2019.03.039
  25. Liang, J., Mourelatos, Z.P. and Nikolaidis, E. (2007), "A single-loop approach for system reliability-based design optimization", J. Mech. Des., 129(12), 1215-1224. https://doi.org/10.1115/1.2779884
  26. Liao, K.W. and Biton, N.I. (2019), "A heuristic optimization considering probabilistic constraints via an equivalent single variable Pearson distribution system", Appl. Soft Comput., 78(1), 670-684. https://doi.org/10.1016/J.ASOC.2019.03.021
  27. Lim, H.J., Lee, Y.-J. and Sohn, H. (2019), "Continuous fatigue crack length estimation for aluminum 6061-T6 plates with a notch", Mech. Syst. Signal Pr., 120, 356-364. https://doi.org/10.1016/j.ymssp.2018.10.018
  28. Liu, Y., Lu, N., Noori, M. and Yin, X. (2014), "System reliability-based optimisation for truss structures using genetic algorithm and neural network", Int. J. Reliab. Saf., 8(1), 51-69. https://doi.org/10.1504/IJRS.2014.062640
  29. Martindale, S.G. and Wirsching. P.H. (1983), "Reliability-based progressive fatigue collapse", J. Struct. Eng., 109(8), 1792-1811. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:8(1792)
  30. Meng, Z., Li, G., Wang, X., Sait, S.M. and Yildiz, A.R. (2020), "A Comparative Study of Metaheuristic Algorithms for Reliability-Based Design Optimization Problems", Arch. Comput. Methods Eng., 28(3), 1853-1869. https://doi.org/10.1007/S11831-020-09443-Z
  31. Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Adv. Eng. Softw., 69(1), 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
  32. Moan, T. (2005), "Safety of Offshore Structures", Center for Offshore Research and Engineering, National University of Singapore, Singapore.
  33. Moghadam, A., AlHamaydeh, M. and Sarlo, R. (2023), "Nothingon-road bridge-weigh-in-motion used for long-span, concrete-box-girder bridges: an experimental case study", J. Struct. Integr. Maint., 8(2), 79-90. https://doi.org/10.1080/24705314.2023.2165606
  34. Moomen, M. and Siddiqui, C. (2022), "Probabilistic deterioration modeling of bridge component condition with random effects", J. Struct. Integr. Maint., 7(3), 151-160. https://doi.org/10.1080/24705314.2022.2048244
  35. Moustapha, M., Sudret, B., Bourinet, J.M. and Guillaume, B. (2016), "Quantile-based optimization under uncertainties using adaptive Kriging surrogate models", Struct. Multidiscip. Optim., 54(6), 1403-1421. https://doi.org/10.1007/S00158-016-1504-4
  36. Nguyen, T.H., Song, J. and Paulino, G.H. (2011), "Quantile-based optimization under uncertainties using adaptive Kriging surrogate models", Struct. Multidiscip. Optim., 44(5), 593-611. https://doi.org/10.1007/s00158-011-0669-0
  37. Panagant, N. and Bureerat, S. (2018), "Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution", Eng. Optim., 50(10), 1645-1661. https://doi.org/10.1080/0305215X.2017.1417400
  38. Paris, P. and Erdogan, F. (1963), "A critical analysis of crack propagation laws", J. Basic Eng., 85(4), 528-533. https://doi.org/10.1115/1.3656900
  39. Royset, J.O., Der Kiureghian, A. and Polak, E. (2001), "Reliability-based optimal structural design by the decoupling approach", Reliab. Eng. Syst. Saf., 73(3), 213-221. https://doi.org/10.1016/S0951-8320(01)00048-5
  40. Safaeian Hamzehkolaei, N., Miri, M. and Rashki, M. (2015), "An enhanced simulation-based design method coupled with metaheuristic search algorithm for accurate reliability-based design optimization", Eng. Comput., 32(3), 477-495. https://doi.org/10.1007/S00366-015-0427-9
  41. Schueller, G. I., and H. A. Jensen (2008), "Computational Methods in Optimization Considering Uncertainties - An Overview", Comput. Methods Appl. Mech. Eng., 198(1), 2-13. https://doi.org/10.1016/J.CMA.2008.05.004
  42. Seyyedabbasi, A. and Kiani, F. (2019), "I-GWO and Ex-GWO: Improved Algorithms of the Grey Wolf Optimizer to Solve Global Optimization Problems", Eng. Comput., 37(1), 509-532. https://doi.org/10.1007/s00366-019-00837-7
  43. Shabakhty, N. (2011), "System failure probability of offshore jack-up platforms in the combination of fatigue and fracture", Eng. Fail. Anal., 18(1), 223-243. https://doi.org/10.1016/J.ENGFAILANAL.2010.09.002
  44. Shepherd, R. and Frost, J.D. (1995), Failures in Civil Engineering: Structural, Foundation and Geoenvironmental Case Studies, American Society of Civil Engineers, New York, NY, USA.
  45. Song, J., Kang, W.H., Lee, Y.-J. and Chun, J. (2021), "State-of-the-Art Review Structural System Reliability: Overview of Theories and Applications to Optimization", ASCE-ASME J. Risk Uncertain. Eng. Syst. A: Civil Eng., 7(2), 1-24. https://doi.org/10.1061/AJRUA6.0001122
  46. Suksuwan, A. and Spence, S.M. (2018), "Efficient approach to system-level reliability-based design optimization of large-scale uncertain and dynamic wind-excited systems", ASCE-ASME J. Risk Uncertain. Eng. Syst. A: Civil Eng., 4(2), 1-12. https://doi.org/10.1061/AJRUA6.0000960
  47. Suksuwan, A. and Spence, S.M. (2019), "Performance-based design optimization of uncertain wind excited systems under system-level loss constraints", Struct. Saf., 80(1), 13-31. https://doi.org/10.1016/J.STRUSAFE.2019.03.004
  48. Suresh, S. (1998), Fatigue of Materials, (2nd Edition), Cambridge university press, Cambridge, UK.
  49. Taflanidis, A.A. and Beck, J.L. (2009), "Stochastic Subset Optimization for Reliability Optimization and Sensitivity Analysis in System Design", Comput. Struct., 87(5), 318-331. https://doi.org/10.1016/J.COMPSTRUC.2008.12.015
  50. Thampan, C.K., Varma, P. and Krishnamoorthy, C.S. (2001), "System reliability-based configuration optimization of trusses", J. Struct. Eng., 127(8), 947-956. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:8(947)
  51. Truong, V.-H. and Kim, S.-E. (2018), "Reliability-based design optimization of nonlinear inelastic trusses using improved differential evolution algorithm", Adv. Eng. Softw., 121(1), 59-74. https://doi.org/10.1016/j.advengsoft.2018.03.006
  52. Valdebenito, M.A. and Schueller, G.I. (2010), "A survey on approaches for reliability-based optimization", Struct. Multidiscip. Optim., 42(5), 645-663. https://doi.org/10.1007/S00158-010-0518-6
  53. Xing, H., Jiang, T. and Hao, P. (2021), "An efficient dominant failure modes search strategy and an extended sequential compounding method of system reliability analysis and optimization", Comput. Methods Appl. Mech. Eng., 375(1), 1-29. https://doi.org/10.1016/j.cma.2020.113637
  54. Yaich, A., Kharmanda, G., El Hami, A., Walha, L. and Haddar, M. (2018), "Reliability based design optimization for multiaxial fatigue damage analysis using robust hybrid method", J. Mech., 34(5), 551-566. https://doi.org/10.1017/JMECH.2017.44
  55. Yang, I.T. and Hsieh, Y.H. (2011), "Reliability-based design optimization with discrete design variables and non-smooth performance functions: AB-PSO algorithm", Autom. Constr., 20(5), 610-619. https://doi.org/10.1016/J.AUTCON.2010.12.003
  56. Yoon, S., Lee, Y.J. and Jung, H.J. (2020), "Accelerated monte carlo analysis of flow-based system reliability through artificial neural network-based surrogate models", Smart Struct. Syst., Int. J., 26(2), 175-184. https://doi.org/10.12989/sss.2020.26.2.175
  57. Youn, B.D. and Choi, K.K. (2004), "An investigation of nonlinearity of reliability-based design optimization approaches", J. Mech. Des., 126(3), 403-411. https://doi.org/10.1115/1.1701880
  58. Yuan, X., Liu, S., Valdebenito, M.A., Faes, M.G., Jerez, D.J., Jensen, H.A. and Beer, M. (2021), "Decoupled reliability-based optimization using Markov chain Monte Carlo in augmented space", Adv. Eng. Softw., 157(1), 1-14. https://doi.org/10.1016/J.ADVENGSOFT.2021.103020
  59. Zaeimi, M. and Ghoddosian, A. (2019), "System RBDO of truss structures considering interval distribution parameters", Struct. Eng. Mech., 70(1), 81-96. https://doi.org/10.12989/sem.2019.70.1.081
  60. Zhao, Y., Dong, S. Jiang, F. and Soares, C.G. (2020), "System Reliability Analysis of an Offshore Jacket Platform", J. Ocean Univ. China, 19(1), 47-59. https://doi.org/10.1007/S11802-020-4181-2
  61. Zuo, F.-J., Li, Y.-F. and Huang, H.-Z. (2018), "Reliability analysis for fatigue damage of railway welded bogies using Bayesian update based inspection", Smart Struct. Syst., Int. J., 22(2), 193-200. https://doi.org/10.12989/sss.2018.22.2.193