DOI QR코드

DOI QR Code

Characterization of the wind-induced response of a 356 m high guyed mast based on field measurements

  • Zhe Wang (School of Civil Engineering and Transportation, South China University of Technology) ;
  • Muguang Liu (School of Civil Engineering and Transportation, South China University of Technology) ;
  • Lei Qiao (School of Civil Engineering and Transportation, South China University of Technology) ;
  • Hongyan Luo (Shenzhen National Climate Observatory, Meteorological Bureau of Shenzhen Municipality) ;
  • Chunsheng Zhang (Shenzhen National Climate Observatory, Meteorological Bureau of Shenzhen Municipality) ;
  • Zhuangning Xie (School of Civil Engineering and Transportation, South China University of Technology)
  • Received : 2023.11.06
  • Accepted : 2024.02.10
  • Published : 2024.03.25

Abstract

Guyed mast structures exhibit characteristics such as high flexibility, low mass, small damping ratio, and large aspect ratio, leading to a complex wind-induced vibration response mechanism. This study analyzed the time- and frequency-domain characteristics of the wind-induced response of a guyed mast structure using measured acceleration response data obtained from the Shenzhen Meteorological Gradient Tower (SZMGT). Firstly, 734 sets of 1-hour acceleration samples measured from 0:00 October 1, 2021, to 0:00 November 1, 2021, were selected to study the vibration shapes of the mast and the characteristics of the generalized extreme value (GEV) distribution. Secondly, six sets of typical samples with different vibration intensities were further selected to explore the Gaussian property and modal parameter characteristics of the mast. Finally, the modal parameters of the SZMGT are identified and the identification results are verified by finite element analysis. The findings revealed that the guyed mast vibration shape exhibits remarkable diversity, which increases nonlinearly along the height in most cases and reaches a maximum at the top of the tower. Moreover, the GEV distribution characteristics of the 734 sets of samples are closer to the Weibull distribution. The probability distribution of the structural wind vibration response under strong wind is in good agreement with the Gaussian distribution. The structural response of the mast under wind loading exhibits multiple modes. As the structural response escalates, the first three orders of modal energy in the tower display a gradual increase in proportion.

Keywords

Acknowledgement

This research is funded by the National Natural Science Foundation of China (51978285, 52378514) and the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology (2021B1212040003).

References

  1. Amiri, A.K. and Bucher, C. (2016), "Wind load identification of a guyed mast inversely from full-scale response measurement", J. Phys.: Conference Series, 744, 012192. https://doi.org/10.1088/1742-6596/744/1/012192.
  2. Azzi, Z., Elawady, A., Irwin, P., Chowdhury, A.G. and Shdid, C.A. (2022), "Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system", Wind Struct., 34(2), 231-257. https://doi.org/10.12989/was.2022.34.2.231.
  3. Ballaben, J.S. and Rosales, M.B. (2018), "Nonlinear dynamic analysis of a 3D guyed mast", Nonlinear Dyn., 93(3), 1395-1405. https://doi.org/10.1007/s11071-018-4267-1.
  4. Ballaben, J.S., Sampaio, R. and Rosales, M.B. (2017), "Uncertainty quantification in the dynamics of a guyed mast subjected to wind load", Eng. Struct., 132, 456-470. https://doi.org/10.1016/j.engstruct.2016.11.025.
  5. Davenport, A.G. and Sparling, B.F. (1992), "Dynamic gust response factors for Guyed Towers", J. Wind Eng. Ind. Aerod., 43(1-3), 2237-2248. https://doi.org/10.1016/0167-6105(92)90662-T.
  6. Gentile, C. and Ubertini, F. (2012), "Radar-based dynamic testing and system identification of a guyed mast", AIP Conference Proceedings [Preprint]. https://doi.org/10.1063/1.4730573.
  7. Glanville, M.J. and Kwok, K.C.S. (1995), "Dynamic characteristics and wind induced response of a steel frame tower", J. Wind Eng. Ind. Aerod., 54-55, 133-149. https://doi.org/10.1016/0167-6105(94)00037-E.
  8. Glanville, M.J. and Kwok, K.C.S. (1997), "Wind-induced deflections of freestanding lattice towers", Eng. Struct., 19(1), 79-91. https://doi.org/10.1016/S0141-0296(96)00025-9
  9. Glanville, M.J., Kwok, K.C.S. and Denoon, R.O. (1996), "Full-scale damping measurements of structures in Australia", J. Wind Eng. Ind. Aerod., 59(2-3), 349-364. https://doi.org/10.1016/0167-6105(96)00016-5.
  10. Gu, M. and Qin, X. R. (2004), "Direct identification of flutter derivatives and aerodynamic admittances of bridge decks", Eng. Struct., 26(14), 2161-2172. https://doi.org/10.1016/j.engstruct.2004.07.015.
  11. Harikrishna, P., Annadurai, A., Gomathinayagam, S. and Lakshmanan, N. (2003), "Full scale measurements of the structural response of a 50 m guyed mast under wind loading", Eng. Struct., 25(7), 859-867. https://doi.org/10.1016/S0141-0296(03)00005-1.
  12. He, J.Y., He, Y.C., Li, Q.S., Chan, P.W., Zhang, L., Yang, H.L. and Li, L. (2020), "Observational study of wind characteristics, wind speed and turbulence profiles during Super Typhoon Mangkhut", J. Wind Eng. Ind. Aerod., 206, 104362. https://doi.org/10.1016/j.jweia.2020.104362.
  13. Holmes, J.D. and Bekele, S. (2022), Wind Loading of Structures. Boca Raton, CRC Press.
  14. Holmes, J.D., Schafer, B.L. and Banks, R.W. (1992), "Wind-induced vibration of a large broadcasting tower", J. Wind Eng. Ind. Aerod., 43(1-3), 2101-2109. https://doi.org/10.1016/0167-6105(92)90640-V.
  15. Ismail, A. (2016), "Seismic assessment of Guyed Towers: A case study combining field measurements and pushover analysis", HBRC J., 12(1), 47-53. https://doi.org/10.1016/j.hbrcj.2014.06.014.
  16. Law, S.S., Bu, J.Q., Zhu, X.Q. and Chan, S.L. (2006), "Response prediction of a 50 m guyed mast under typhoon conditions", Wind Struct., 9(5), 397-412. https://doi.org/10.12989/was.2006.9.5.397
  17. Li, Q.S., Li, X. and Chan, P.W. (2021b), "Impact of a fifty-year-recurrence super typhoon on skyscrapers in Hong Kong: Largescale field monitoring study", J. Struct. Eng., 147(3), 04021004, 1-19. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002930.
  18. Li, X., Yu, X., Li, Q.S. and Allsop, A. (2021a), "Field measurement and validation of structural dynamic parameters of skyscrapers under super typhoon excitation", J. Civil Struct. Health Monit., 11(3), 1-19. https://doi.org/10.1007/S13349-021-00470-3.
  19. Peeters, B. and De Roeck, G. (1999), "Reference-based stochastic subspace identification for output-only modal analysis", Mech. Syst. Signal Processing, 13(6), 855-878. https://doi.org/10.1006/mssp.1999.1249.
  20. Peeters, B. and De Roeck, G. (2001), "Stochastic system identification for operational modal analysis: A review", J. Dyn. Syst. Measure. Control, 123(4), 659-667. https://doi.org/10.1115/1.1410370.
  21. Qin, X.-R. and Gu, M. (2004), "Determination of flutter derivatives by stochastic subspace identification technique", Wind Struct., 7(3), 173-186. https://doi.org/10.12989/WAS.2004.7.3.173.
  22. Reynders, E., Pintelon, R. and De Roeck, G. (2008), "Uncertainty bounds on modal parameters obtained from stochastic subspace identification", Mech. Syst. Signal Processing, 22(4), 948-969. https://doi.org/10.1016/j.ymssp.2007.10.009.
  23. Saudi, G. (2014) "Structural assessment of a guyed mast through measurement of natural frequencies", Eng. Struct., 59, 104-112. https://doi.org/10.1016/j.engstruct.2013.09.049
  24. Solari, G. and Pagnini, L.C. (1999), "Gust buffeting and aeroelastic behaviour of Poles and Monotubular Towers", J. Fluids Struct., 13(7-8), 877-905. https://doi.org/10.1006/jfls.1999.0240.
  25. Sparling Bruce, F., King, J. and Peter, C. (2011), "Comparison of aeroelastic wind tunnel tests and frequency domain analyses of guyed mast dynamic response", Canadian J. Civil Eng., 38(9), 984-997. https://doi.org/10.1139/l10-130.
  26. Welch, P. (1967), "The use of fast fourier transform for the estimation of Power Spectra: A method based on time averaging over short, modified periodograms", IEEE Transact. Audio Electroacoustics, 15(2), 70-73. https://doi.org/10.1109/tau.1967.1161901.
  27. Xie, Z., Liu, C. and Yu, X. (2020), "Field measurements and wind tunnel experimental investigations of wind effects on Guangzhou West Tower", Struct. Des. Tall Spec. Build., 29(13). https://doi.org/10.1002/tal.1774.
  28. Zhang, L., Hu, X., Xie, Z., Shi, B., Zhang, L. and Wang, R. (2020), "Field measurement study on time-varying characteristics of modal parameters of super high-rise buildings during super typhoon", J. Wind Eng. Ind. Aerod., 200, 104139. https://doi.org/10.1016/j.jweia.2020.104139.
  29. Zhao, S., Yan, Z., Savory, E. and Zhang, B. (2022), "Wind-induced mechanical energy analyses for a super high-rise and long-span transmission tower-line system", Wind Struct., 34(2), 185-197. https://doi.org/10.12989/was.2022.34.2.185.
  30. Zhou, K., Li, Q.-S. and Han, X.-L. (2022), "Modal identification of civil structures via stochastic subspace algorithm with Monte Carlo-based Stabilization Diagram", J. Struct. Eng., 148(6), 04022066. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003353.
  31. Zhou, Z., Xie, Z. and Zhang, L. (2023), "Vibration control in high-rise buildings with tuned liquid dampers- numerical simulation and engineering applications", Wind Struct., 36(2), 91-103. https://doi.org/10.12989/was.2023.36.2.091.