DOI QR코드

DOI QR Code

Full-scale simulation of wind-driven rain and a case study to determine the rain mitigation effect of shutters

  • Received : 2023.06.06
  • Accepted : 2024.01.30
  • Published : 2024.03.25

Abstract

Wind Driven Rain (WDR) poses a significant threat to the building environment, especially in hurricane prone regions by causing interior and content damage during tropical storms and hurricanes. The damage due to rain intrusion depends on the total amount of water that enters the building; however, owing to the use of inadequate empirical methods, the amount of water intrusion is difficult to estimate accurately. Hence, the need to achieve full-scale testing capable of realistically simulating rain intrusion is widely recognized. This paper presents results of a full-scale experimental simulation at the NHERI Wall of Wind Experimental Facility (WOW EF) aimed at obtaining realistic rain characteristics as experienced by structures during tropical storms and hurricanes. A full-scale simulation of rain in strong winds would allow testing WDR intrusion through typical building components. A study of rain intrusion through a sliding glass door is presented, which accounted for the effects of multiple wind directions, test durations and wind speeds; configurations with and without shuttering systems were also considered. The study showed that significant levels of water intrusion can occur during conditions well below current design levels. The knowledge gained through this work may enhance risk modeling pertaining to loss estimates due to WDR intrusion in buildings, and it may help quantify the potential reduction of losses due to the additional protection from shuttering systems on sliding glass doors during winds.

Keywords

Acknowledgement

These tests were conducted at the NHERI Wall of Wind Experimental Facility (NSF CMMI #1520853 & #2037899). The authors of this paper wish to acknowledge the Florida Department of Emergency Management (DEM) for financial support to perform the sliding glass door tests. The authors would also like to express their sincere gratitude to Dr. Emil Simiu for his constructive feedback on this manuscript.

References

  1. Abdelhady, A.U., Xu, D., Ouyang, Z., Spence, S.M., McCormick, J. and Ivanov, V.Y. (2022), "A framework for estimating water ingress due to hurricane rainfall", J. Wind Eng. Ind. Aerod., 221, 104891. 
  2. Abuku, M., Blocken, B. and Roels, S. (2009), "Moisture response of building facades to wind-driven rain: field measurements compared with numerical simulations", J. Wind Eng. Ind. Aerod., 97, 197-207.  https://doi.org/10.1016/j.jweia.2009.06.006
  3. Alawode, K.J., Vutukuru, K.S., Elawady, A., Jae Lee, S., Gan Chowdhury, A. and Lori, G. (2022), "April. effects of permeability on the dynamic properties and weather-tightness of double skin curtain walls", In Structures Congress 2022, 444-456. 
  4. Alawode, K.J., Vutukuru, K.S., Elawady, A., Lee, S.J., Chowdhury, A.G. and Lori, G. (2023), "Wind-induced vibration and wind-driven rain performance of a full-scale single-skin facade unit with vertical protrusions", J. Architect. Eng., 29(2), 04023003. 
  5. Automated Surface/Weather Observing Systems |National Centers for Environmental Information (NCEI) [WWW Document], n.d. URL https://www.ncei.noaa.gov/products/land-based-station/automated-surface-weather-observing-systems (accessed 9.15.21). 
  6. Baheru, T. (2014), Development of test-based wind-driven rain intrusion model for hurricane-induced building interior and contents damage. 
  7. Baheru, T., Chowdhury, A.G., Bitsuamlak, G., Masters, F.J. and Tokay, A. (2014a), "Simulation of wind-driven rain associated with tropical storms and hurricanes using the 12-fan wall of wind", Build. Environ., 76, 18-29.  https://doi.org/10.1016/j.buildenv.2014.03.002
  8. Baheru, T., Chowdhury, A.G., Pinelli, J.-P. and Bitsuamlak, G. (2014b), "Distribution of wind-driven rain deposition on low-rise buildings: Direct impinging raindrops versus surface runoff", J. Wind Eng. Ind. Aerod., 133, 27-38. https://doi.org/10.1016/j.jweia.2014.06.023. 
  9. batiment, C. national de recherches du C.D. des recherches sur le, Robinson, G. and Baker, M.C. (1975), "Wind-driven rain and buildings", Conseil national de recherches du Canada. 
  10. Best, A.C. (1950), "The size distribution of raindrops", Quarter. J. Royal Meteorol. Soc., 76, 16-36.  https://doi.org/10.1002/qj.49707632704
  11. Bitsuamlak, G.T., Chowdhury, A.G. and Sambare, D. (2009), "Application of a full-scale testing facility for assessing wind-driven-rain intrusion", Build. Environ., 44, 2430-2441.  https://doi.org/10.1016/j.buildenv.2009.04.009
  12. Blocken, B. and Carmeliet, J. (2002), "Spatial and temporal distribution of driving rain on a low-rise building", Wind Struct., 5, 441-462.  https://doi.org/10.12989/was.2002.5.5.441
  13. Blocken, B. and Carmeliet, J. (2004), "A review of wind-driven rain research in building science", J. Wind Eng. Ind. Aerod., 92, 1079-1130.  https://doi.org/10.1016/j.jweia.2004.06.003
  14. Blocken, B. and Carmeliet, J. (2005), "High-resolution wind-driven rain measurements on a low-rise building-experimental data for model development and model validation", J. Wind Eng. Ind. Aerod., 93, 905-928.  https://doi.org/10.1016/j.jweia.2005.09.004
  15. Blocken, B. and Carmeliet, J. (2007), "On the errors associated with the use of hourly data in wind-driven rain calculations on building facades", Atmos. Environ., 41, 2335-2343. https://doi.org/10.1016/j.atmosenv.2006.11.014. 
  16. Blocken, B. and Carmeliet, J. (2010), "Overview of three state-of-the-art wind-driven rain assessment models and comparison based on model theory", Build. Environ., 45, 691703. 
  17. Blocken, B., Abuku, M., Nore, K., Briggen, P.M., Schellen, H.L., Thue, J.V., Roels, S. and Carmeliet, J. (2011), "Intercomparison of wind-driven rain deposition models based on two case studies with full-scale measurements", J. Wind Eng. Ind. Aerod., 99, 448-459.  https://doi.org/10.1016/j.jweia.2010.11.004
  18. Blocken, B., Dezso, G., van Beeck, J. and Carmeliet, J. (2010), "Comparison of calculation models for wind-driven rain deposition on building facades", Atmos. Environ., 44, 1714-1725.  https://doi.org/10.1016/j.atmosenv.2010.02.011
  19. Blocken, B., Roels, S. and Carmeliet, J. (2007), "A combined CFD-HAM approach for wind-driven rain on building facades", J. Wind Eng. Ind. Aerod., 95, 585-607. https://doi.org/10.1016/j.jweia.2006.12.001. 
  20. Choi, E.C. (1993), "Simulation of wind-driven-rain around a building", J. Wind Eng. Ind. Aerod., 46, 721-729.  https://doi.org/10.1016/0167-6105(93)90342-L
  21. Choi, E.C. (1999), "Wind-driven rain on building faces and the driving-rain index", J. Wind Eng. Ind. Aerod., 79, 105-122.  https://doi.org/10.1016/S0167-6105(97)00296-1
  22. Choi, E.C.C. (1994), "Determination of wind-driven-rain intensity on building faces", J. Wind Eng. Ind. Aerod., 51, 55-69.  https://doi.org/10.1016/0167-6105(94)90077-9
  23. Chowdhury, A.G., Bitsuamlak, G.T., Fu, T.-C. and Kawade, P. (2011), "Study on roof vents subjected to simulated hurricane effects", Natural Hazards Review, 12, 158-165.  https://doi.org/10.1061/(ASCE)NH.1527-6996.0000039
  24. Chowdhury, A.G., Vutukuru, K.S. and Moravej, M. (2018), "Full- and large-scale experimentation using the wall of wind to mitigate wind loading and rain impacts on buildings and infrastructure systems", In Proceedings of the 11th Structural Engineering Convention (SEC18). Jadavpur University Kolkatta, India. 
  25. Chowdhury, A.G., Zisis, I., Irwin, P., Bitsuamlak, G., Pinelli, J.P., Hajra, B. and Moravej, M. (201),." Large-scale experimentation using the 12-fan wall of wind to assess and mitigate hurricane wind and rain impacts on buildings and infrastructure systems", J. Struct. Eng., 143(7), 04017053. 
  26. CRDReference: Choi, E.C.C. (1999), Wind-driven rain on building faces and the driving-rain index [WWW Document], n.d. URL https://users.encs.concordia.ca/~raojw/crd/reference/reference001229.html (accessed 9.15.21). 
  27. Dao, T.N. and van de Lindt, J.W. (2012), "Loss analysis for wood frame buildings during hurricanes. I: Structure and hazard modeling", J. Perform. Construct. Facilities, 26, 729-738.  https://doi.org/10.1061/(ASCE)CF.1943-5509.0000269
  28. FEMA 488 (2021), Mitigation Assessment Team Report Hurricane Charley in Florida Observations, Recommendations, and Technical Guidance | Building America Solution Center [WWW Document], n.d. URL https://basc.pnnl.gov/library/fema-488-mitigation-assessment-team-report-hurricane-charley-florida-observations (accessed 9.15.21). 
  29. Florida Codes - Test Protocols (2nd Edition) - TESTING APPLICATION STANDARD TAS 202 94 CRITERIA FOR TESTING IMPACT NON IMPACT RESISTANT BUILDING ENVELOPE COMPONENTS USING UNIFORM STATIC AIR PRESSURE [WWW Document], n.d. URL https://codes.iccsafe.org/content/FLBCTP2001/testing-application-standard-tas-202-94-criteria-for-testing-impact-non-impact-resistant-building-envelope-components-using-uniform-static-air-pressure (accessed 8.1.22). 
  30. Foroushani, S.S.M., Ge, H. and Naylor, D. (2014), "Effects of roof overhangs on wind-driven rain wetting of a low-rise cubic building: A numerical study", J. Wind Eng. Ind. Aerod., 125, 38-51.  https://doi.org/10.1016/j.jweia.2013.10.007
  31. Friedrich, K., Higgins, S., Masters, F.J. and Lopez, C.R. (2013), "Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall", J. Atmos. Oceanic Technol., 30, 2063-2080.  https://doi.org/10.1175/JTECH-D-12-00254.1
  32. Gao, L., Cheng, J.J., Ding, B.S., Lei, J., An, Y.F. and Ma, B.T. (2022), "Mobile sand barriers for windblown sand mitigation: Effects of plane layout and included angle", Wind Struct., 34(3), 275. 
  33. Hangan, H. (1999), "Wind-driven rain studies. A C-FD-E approach", J. Wind Eng. Ind. Aerod., 81, 323-331.  https://doi.org/10.1016/S0167-6105(99)00027-6
  34. Inculet, D.R. (2001), The Fesign of Cladding Against Wind-driven Rain, Ph. D. Dissertaiton, The University of Western Ontario, London, Canada. 
  35. ISO, E. (2009), Hygrothermal Performance of Buildings-Calculation and Presentation of Climatic Data-Part 3: Calculation of a Driving Rain Index for Vertical Surfaces from Hourly Wind and Rain Data, BS EN ISO 15927-3. 
  36. Ke, S., Dong, Y., Zhu, R. and Wang, T. (2020), "Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine", Wind Struct., 30(4), 433. 
  37. Kelkar, V.N. (1961), "Size distribution of raindrops", Nature, 192, 252-252. https://doi.org/10.1038/192252a0. 
  38. Kijewski-Correa, T.L., Roueche, D.B., Mosalam, K.M., Prevatt, D.O. and Robertson, I.N. (2021), "StEER: A community-centered approach to assessing the performance of the built environment after natural hazard events", Front. Built Environ., 7. 
  39. Kubilay, A., Derome, D., Blocken, B. and Carmeliet, J. (2014), "High-resolution field measurements of wind-driven rain on an array of low-rise cubic buildings", Build. Environ., 78, 1-13.  https://doi.org/10.1016/j.buildenv.2014.04.004
  40. Lonfat, M., Marks Jr, F.D. and Chen, S.S. (2004), "Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective", Month. Weath. Rev., 132, 1645-1660.  https://doi.org/10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2
  41. Lopez, C.R. (2011), Measurement, Analysis, and Simulation of Wind Driven Rain, University of Florida. 
  42. Merceret, F.J. (1974), "On the size distribution of raindrops in Hurricane Ginger", Month. Weath. Rev., 102, 714-716.  https://doi.org/10.1175/1520-0493(1974)102<0714:OTSDOR>2.0.CO;2
  43. Mitigation Assessment Team Report: Hurricane Irma in Florida,
  44. Perica, S., n.d. Precipitation-Frequency Atlas of the United States. Volume 10, Version 3.0. Northern States; Connecticut, Maine, Massachusetts, New Hampshire, New York, Rhode Island, Vermont. https://doi.org/10.25923/99JT-A543 
  45. PF Map: Contiguous US [WWW Document], n.d. URL https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html (accessed 8.1.22). 
  46. Pinelli, J.-P., Roueche, D., Kijewski-Correa, T., Plaz, F., Prevatt, D., Zisis, I., Elawady, A., Haan, F., Pei, S. and Gurley, K. (2018), "Overview of damage observed in regional construction during the passage of Hurricane Irma over the State of Florida, in: Forensic Engineering 2018: Forging Forensic Frontiers", American Society of Civil Engineers Reston, VA, 1028-1038. 
  47. Rainfall Intensity Changes Over Time: Have the Codes Kept Pace? | IIBEC, 2021. URL https://iibec.org/rainfall-intensity-changes-over-time-have-the-codes-kept-pace/ (accessed 5.25.23). 
  48. Raji, F. (2018), Interior Damage of Residential Building Due to Wind-Driven Rain Intrusion. 
  49. Rasmussen, E.N., Straka, J.M., Davies-Jones, R., Doswell III, C.A., Carr, F.H., Eilts, M.D. and MacGorman, D.R. (1994), "Verification of the origins of rotation in tornadoes experiment: VORTEX", Bull. Amer. Meteorol. Soc., 75, 995-1006.  https://doi.org/10.1175/1520-0477(1994)075<0995:VOTOOR>2.0.CO;2
  50. Salzano, C.T., Masters, F.J. and Katsaros, J.D. (2010.), "Water penetration resistance of residential window installation options for hurricane-prone areas", Build. Environ., 45, 1373-1388.  https://doi.org/10.1016/j.buildenv.2009.12.002
  51. Standard Test Method for Determining Rate of Air Leakage Through Exterior Windows, Skylights, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen [WWW Document], n.d. URL https://www.astm.org/e0283_e0283m-19.html (accessed 8.1.22). 
  52. Standard Test Method for Field Determination of Water Penetration of Installed Exterior Windows, Skylights, Doors, and Curtain Walls, by Uniform or Cyclic Static Air Pressure Difference [WWW Document], n.d. URL https://www.astm.org/e1105-15.html (accessed 8.1.22). 
  53. Standard Test Method for Structural Performance of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure Difference [WWW Document], n.d. URL https://www.astm.org/e0330_e0330m-14r21.html (accessed 8.1.22). 
  54. Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Cyclic Static Air Pressure Difference [WWW Document], n.d. URL https://www.astm.org/e0547-00r16.html (accessed 8.1.22). 
  55. Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference [WWW Document], n.d. URL https://www.astm.org/e0331-00r16.html (accessed 8.1.22). 
  56. Standards, E., n.d. BS EN 12155:2000 Curtain walling. Watertightness. Laboratory test under static pressure [WWW Document]. https://www.en-standard.eu. URL https://www.en-standard.eu/bs-en-12155-2000-curtain-walling-watertightness-laboratory-test-under-static-pressure/ (accessed 8.1.22a). 
  57. Standards, E., n.d. BS EN 12865:2001 Hygrothermal performance of building components and building elements. Determination of the resistance of external wall systems to driving rain under pulsating air pressure [WWW Document]. https://www.en-standard.eu. URL https://www.en-standard.eu/bs-en-12865-2001-hygrothermal-performance-of-building-components-and-building-elements-determination-of-the-resistance-of-external-wall-systems-to-driving-rain-under-pulsating-air-pressure/ (accessed 8.1.22d). 
  58. Standards, E., n.d. BS EN 13050:2011 Curtain Walling. Watertightness. Laboratory test under dynamic condition of air pressure and water spray [WWW Document]. https://www.en-standard.eu. URL https://www.en-standard.eu/bs-en-13050-2011-curtain-walling-watertightness-laboratory-test-under-dynamic-condition-of-air-pressure-and-water-spray/ (accessed 8.1.22b). 
  59. Standards, E., n.d. BS EN 13051:2001 Curtain walling. Watertightness. Site test [WWW Document]. https://www.en-standard.eu. URL https://www.en-standard.eu/bs-en-13051-2001-curtain-walling-watertightness-site-test/ (accessed 8.1.22c). 
  60. Straube, J.F. and Burnett, E.F. (1998), "Driving rain and masonry veneer", ASTM Spec. Tech. Public., 1314, 73-90.  https://doi.org/10.1520/STP12096S
  61. Straube, J.F. and Burnett, E.F.P. (2000), "Simplified prediction of driving rain on buildings", Proceedings of the International Building Physics Conference. Eindhoven University of Technology Eindhoven, tNetherlands, 375-382. 
  62. Subramanian, D., Salazar, J., Duenas-Osorio, L. and Stein, R. (2014), "Building and validating geographically refined hurricane wind risk models for residential structures", Nat. Haz. Rev., 15, 04014002. 
  63. Surry, D., Inculet, D.R., Skerlj, P.F., Lin, J.-X. and Davenport, A.G. (1994), "Wind, rain and the building envelope: a status report of ongoing research at the University of Western Ontario", J. Wind Eng. Ind. Aerod., 53, 19-36. https://doi.org/10.1016/0167-6105(94)90016-7. 
  64. Tokay, A., Bashor, P.G., Habib, E. and Kasparis, T. (2008), "Raindrop size distribution measurements in tropical cyclones", Month. Weath. Rev., 136, 1669-1685.  https://doi.org/10.1175/2007MWR2122.1
  65. Utilizing a Modified AAMA 501.1 Dynamic Wind Generation to Simulate Wind-Driven Rain in Windows, Curtain Walls, Architectural Metal Walls, Masonry, EIFS, and Concrete Facades [WWW Document], n.d. URL https://www.astm.org/stp154920130042.html (accessed 8.1.22). 
  66. van de Lindt, J.W. and Dao, T.N. (2009), "Performance-based wind engineering for wood-frame buildings", J. Struct. Eng., 135, 169-177.  https://doi.org/10.1061/(ASCE)0733-9445(2009)135:2(169)
  67. van de Lindt, J.W. and Nguyen Dao, T. (2012), "Loss analysis for wood frame buildings during hurricanes. II: Loss estimation", J. Perform. Construct. Facilities, 26, 739-747.  https://doi.org/10.1061/(ASCE)CF.1943-5509.0000270
  68. Van Straaten, R.A., Kopp, G.A. and Straube, J.F. (2010), "Testing water penetration resistance of window systems exposed to "realistic" dynamic air pressures", In Proceedings of International Conference of Building Envelope Systems and Technology (ICBEST), Vancouver. 
  69. Vutukuru, K.S. (2021), "Full-scale experimental modeling to study wind-induced vibrations, wind driven rain and their effects on curtainwall window systems", FIU Electronic Theses and Dissertations. 4849. 
  70. Vutukuru, K.S., Alawode, K.J., Bakhtiari, A., Elawady, Amal, Lee, S.J., Chowhdury, A.G. and Lori, G. (2021), "Full-scale experimental testing to investigate wind-induced vibrations on curtain wall systems", Proceedings of International Structural Engineering and Construction, 8(1). 
  71. Vutukuru, K.S., Moravej, M. and Gan Chowhdury, A. (2019), "Wind driven rain intrusion reduction for shuttered windows", In Proceedings of 15th International Conference on Wind Engineering, Beijing, China. 
  72. Vutukuru, K.S., Moravej, M., Elawady, A. and Chowdhury, A.G. (2020), "Holistic testing to determine quantitative wind-driven rain intrusion for shuttered and impact resistant windows", J. Wind Eng. Ind. Aerod., 206, 104359. 
  73. West Texas Mesonet | National Wind Institute | TTU [WWW Document], n.d. URL https://www.depts.ttu.edu/nwi/research/facilities/wtm/ (accessed 9.15.21). 
  74. Willis, P.T. and Tattelman, P. (1989), "Drop-size distributions associated with intense rainfall", J. Appl. Meteorol. Climatology, 28, 3-15.  https://doi.org/10.1175/1520-0450(1989)028<0003:DSDAWI>2.0.CO;2
  75. Wise, A.F.E., Sexton, D.E. and Lillywhite, M.S.T. (1965), Studies of Air Flow Round Buildings. Building Research Station Watford (ENGLAND). 
  76. Zhang, Y., Jiang, C. and Zhan, X. (2021), "Modelling the multi-physics of wind-blown sand impacts on high-speed train", Wind Struct., 32(5), 487-499.