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HOMOTHETIC MOTIONS WITH GENERALIZED
TRICOMPLEX NUMBERS

SIDDIKA OZKALDI KARAKUS, FERDAG KAHRAMAN AKSOYAK*, AND
GULSAH OZAYDIN

Abstract. In this paper, we define the generalized tricomplex numbers
and give some algebraic properties of them. By using the matrix repre-
sentation of generalized tricomplex numbers, we determine a motion on

the hypersurface M in eight dimensional generalized linear space Ri By

and show that this is a homothetic motion. Also, for some special cases
of the real numbers «, 8 and -y, we give some examples of homothetic mo-
tions in R® and Ri and obtain some rotational matrices in these spaces,
too.

1. Introduction

Corrado Segre was discovered multicomplex numbers in 1892 [14]. Let Cq
be a real numbers and for every n > 0 let i,, be a imaginary number, that is,
2

iz = —1. The multicomplex numbers denoted by C,,41 is given by:

Cori={z=z+ipr1y:z, yeC,}.

In multicomplex numbers systems, different imaginer units are commutative,
that is, 4,2, = imin. For n =0, C; is the set of complex number, for n = 1, C,
is the set of bicomplex number, for n = 2, C3 is the set of tricomplex number
and if it continues like this C,, is the set of multicomplex numbers order n.

Various studies have been done on bicomplex numbers and tricomplex num-
bers, which are a special case of multicomplex numbers. Price introduced the
function theory of multicomplex numbers and gave some details about bicom-
plex numbers [13].

Also, the generalized bicomplex numbers and some algebraic properties of
them were introduced in [10].

Number systems have a wide application area in motion geometry. Espe-
cially the relationship between number systems and homothetic motion was
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first discussed by Yayh in [15]. He proved that the motion described by ma-
trix representations in terms of 4 x 4 of quaternions is a homothetic motion
in R* and then Yayli and Biikcii defined homothetic motion in R® with Cay-
ley numbers (Octonions) [16]. Also, Jafari and Yayh investigated homothetic
motion with generalized quaternions [4]. Based on this idea, by means of bi-
complex numbers the homothetic motions on a special hypersurfaces in R* and
R4 were defined in [5] and [2], respectively. And then Ozkaldi Karakus etc.
by using generalized bicomplex numbers determined homothetic motions on
some hypersurfaces in R% 5 [8] and this study is a generalization of the studies
numbered by [5] and [2], too. In [1] Babadag and others discribed a motion by
using the matrix representation of tricomplex numbers and they showed that
it is a homothetic motion in R8.

In this paper, we introduce the generalized tricomplex numbers and obtain
their some algebraic properties. By means of the matrix representation of
generalized tricomplex numbers, we determine a motion on the hypersurface
M in eight dimensional generalized linear space Rim and show that it is a
homothetic motion. Also, for some special cases of the real numbers «, 8 and
7, we obtain some examples of homothetic motions in R® and R%.

2. Basic Concepts

In this section, some basic concepts which we need in the paper will be
given.

2.1. Generalized Bicomplex Numbers

Generalized bicomplex numbers was introduced by Ozkald1 Karakug and
Kahraman Aksoyak [10].
Any generalized bicomplex number z is as:
T =T + T2t + T3] + x4i],

such that 2; € R, for 1 < t < 4 and imaginer units i and j hold i*> = —a,
j? = —B,ij = ji for a, 3 € R. The set of generalized bicomplex numbers is
showen by C,g3.

For z, y € C,p the addition, multiplication, and scalar multiplication are
given, respectively

r4+y=(r14+y1)+ (@2 +y2)i+ (x3+ys3)j+ (x4 + vya)ij,

vy = (v1y1 — axeys — Basys + afrays) + (v1y2 + xay1 — Brsys — Brays) i
(1) +(T1y3 + T3y1 — aways — awaye) j + (T1y4 + Tay1 + T2y3 + T3Y2) ],
cx = cx1 + cxat + cxsj + cxqij, ¢ € R.

Hence, C,p is 4-dimensional vector space on R with respect to the addition and
scalar multiplication are defined above and the base of Cop is {1,4, 4,45} . Also
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it has a commutative real algebra with generalized bicomplex number product
given by (1).

Any generalized bicomplex number can be rewritten as z = (z1 + z27) +
(x3 + x4%) j. There are three different kinds of conjugations for generalized
bicomplex numbers. They are given as follows:

2 = (@1 — i) + (w3 — 24d) J,
= (21 + 29i) — (23 4 141) ],
t3

B = (@ —x21) — (w3 — 241) J,

where ', 2% and 2% are the conjugations of x according to 4,5 and both 4

and j, respectively. If we product z and its conjugation, we calculate following
equalities.

w-a" = (2 4 axd - fad — afa?) + 2 (v12s + awary) §,
Tzt = (:1;% — ax3 + Bas — aﬁxi) +2 (2122 + Br3ra) i,
o2 = (274 aad + Ba3 + afrl) + 2 (124 — 2om3) 0.

If we take as o =1 and 8 = 1, we get bicomplex numbers.
2.2. Generalized Tricomplex Numbers

Now, the generalized tricomplex numbers was introduced by [9].
The set defined as:
TCop={2=a+ky:z,y € Cayg, k> = —v, vy € R},
is called generalized tricomplex numbers set. If we take
T =21+ 220 + 235 + 241 and y = z5 + z¢1 + 277 + 287,
any generalized tricomplex number z is defined as follows:
z = (214 220+ 23] + 2475) + k (25 + 260 + 275 + 2817) ,
= 21+ 200 + 237 + 241J + 25k + zgtk + 275k + zgijk.

Specially here, if we take as a« = 8 = v = 1, tricomplex numbers are obtained
[1].

Let 21, y1, T2, y2 be generalized bicomplex numbers and k? = —v, k € R.
Addition of any two generalized tricomplex numbers z = x7 + ky; and w =
o + kys is as follows:

zH+w=z1+x2+k(y1+y2).

The generalized tricomplex numbers set is closed according to the addition.
That is, the sum of the two generalized tricomplex numbers is again a gener-
alized tricomplex number. (T'C,g,+) is an Abel group and identity element is
(0,0,0,0,0,0,0,0).

The scalar multiplication of z in TC,z by a real number ) is defined as:

Az = Az + kly € TC,p.
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The set of TC,g specifies 8—dimensional vector space on R object based on ad-
dition and scalar multiplication. Also a base of TCyp is {1,4, j, ij, k, ik, jk,ijk}.
The product of any two generalized tricomplex numbers z = z1 + ky; and
w = xg + kyo is following:
(2) 2w = (x1+ kyr) (z2 + ky2),
= (z122 —y91y2) + k (21y2 + 2201) -

The Hamilton operator is isomorphic by multiplication in generalized tri-
complex numbers as shown in the generalized bicomplex numbers. To show
this we define a linear transformation as:

T: T(CQB — TCaB
zZ — T(z) =T, : T(Cag — T(Caﬁ

w— T, (w) = zw.

Using this linear transformation, the matrix representation 7, of generalized
tricomplex number z = 21 + 291 + 237 + 2417 + 25k + 26tk + 277k + 28ijk based
on the basis {1,1, j, 4, k, ik, jk,ijk} on the real number set is obtained as:

21 —azg —fz3 afzg —vz5 ayzg Pyzr —afyzs

z2 21 —Bzys —Pzz —vze —vz5  Pyzs Byze
zZ3 —OQzZy z1 —QZy —YR7  QYZg —YZ25 ayze
(3) T — Z4 z3 zZ2 21 —Yes  —YRT —VZ6 —Y%5
? z5 —azg —fzr aBzg 21 —azg —fBz3  afBz
<6 z5 —Bzg  —P27 22 21 —Bz4 —Bz3
zZ7r  —Qzg z5 —QZg z3 —QzZy z1 —QzZ2
<8 27 26 25 Z4 z3 22 <1

By using (3), we can express the generalized tricomplex numbers product as
follows:

21 —azg —fBzz3 afzg —vyzs avyze  PByzr —aByzs w1
29 21 —PBza —Pz —vyze —vzs Byzs Bz wy
Z3 —Ozy4 zZ1 —QZy —YZ7 QYZg —YZ5 QaYyZzZg ws
w0 — Z4 z3 Z2 21 —7YZ8  —YRT —7%6 —%5 Wy
z5 —oazg —Bzr afzg 21 —azy —[fz3 afizy ws
26 25 —Bz —Bar 2 21 —Bz —Bz we
zZr  —QZzg z5 —QZg z3 —QZy z1 —Qz2 wr
28 27 26 25 24 23 22 21 ws

If generalized tricomplex number z is written as z = x; + ky; depending on
base {1, k}, in that case the matrix notation of z is of type 2 x 2 as:

TZ:<$1 —TY1 >
1 Z1
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The generalized tricomplex number product which is given by (2) can be ex-
pressed by following matrix product, too, that is,

o — 1 —7N ( T2 )
Y1 T Y2
Let x = 21 4 201 + 235 4+ 2415 and y = 25 + 267 + 27j + 28%j be generalized
bicomplex numbers. The conjugation of generalized tricomplex number z =
x + ky is defined by
2= (m+ky)”,
= xtg - kytsa
= [(z1 — 220) — (23 — 24) j] — [(25 — 267) — (27 — 281) j] K,
= 21 — 291 — 23] + 241] — z5k + zgtk + z7jk — zgijk,
where %3 and y'* are the conjugations of = and y according to both i and j
in generalized bicomplex numbers, respectively. So that, we can calculate the
product of z and the conjugation of z as:

22t = 2d b azs 4 BaE 4 afBed +y2d +ayzd 4+ ByiE + afya;

+2ij (2124 — 2223 + Y2528 — V2627)
+2ik (z126 + Bz3zs — 2225 — Bzaz7)
+25k (2127 + qzozs — 2325 — 2426) -
In particular, if « = 8 = v = 1, we obtain the following equation which is given
by Babadag in 2009 [1].
22t = A4ttt
+2ij (2124 — 2223 + 2528 — 2627)
+2ik (2126 + 2328 — 2225 — 2427)
+25k (2127 + 2228 — 2325 — 2476) -

So, we can say that the algebraic properties of generalized tricomplex number
include the algebraic properties of tricomplex number.

3. Homothetic Motions via Generalized Tricomplex Numbers

8

Now, we determine the homothetic motion on a hypersurface M at R7 5.

with the help of generalized tricomplex numbers.

_ 8
Let z = (21,22,23,24,25726,27728) € Raﬂry? for

_ 8 .
M. = Z = (21722,23,24725,26,Z77Z8) S Raﬁ'\/ . C RS
1=
z127 + Qzozg — 2325 — azazg =0, 2 # 0 apfy

Mo = Z = (Zl,22723az4a25726727728) GRZ/BV : RS
2T — 2z — Y2627 = 0, 2 £0 [ T af
2124 + V2528 — 2023 — V227 = 0, 2 #
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My=1 7= (21, 22, 23, 24, 25, 26, 27, 28) € RS 5. - CRE. .
2126 + Pr3zg — 2225 — Bzazr =0, 2 # 0 By

M = M; N My N Ms be a hypersurface in Rzﬁv' Then the norm of generalized
tricomplex number z on the hypersurface M is defined by

Izl = Vlg(z,2)l,
= \/|Zzt|»

= \/|z% + az3 + 823 + afzi + v22 + ay2d + By22 + aByRl|.

In that case, a unit sphere in Riﬂ,y is given by

7 (21,22,23724,Z5,267Z7,28) ERzﬁ’y :
Saﬂ'y = 2 2 2 2 2 2 2 2 1
27+ azs + P25 + afzy + vz + avzg + Byzs + afbyzg =

Let us consider the following curve

n:ICR—MCR}g,

s = n(s) = (m(s),m2(s), n3(s), na(s), ns(s), m6(s), m7(5), M8 (5)) ,
for every s € I. We suppose that the curve 7(s) is smooth regular curve of

order r. By using (3), the matrix representation of the curve n € ]RZ 3+ 18 given
by

m o —any —PBns afny —yns ayne  Bynr —aByns
ne  m —Bna —Bnz —yne —yms  Byms  Bymr

N3 —amn m —Qn2  —yNr ayng s QaYTe
(4 B= Ma 73 2 m —Yms TN —Me Vs
ns —ane —pPnr aPns  om —ang —Pns afm
ne M5 —Pns —Bur M2 m  —Bma =P
nr —ans M5 — Qg n3 —Qny m —Qn2
8 nr N6 M5 M4 13 2 m

8

Now we will describe the one parameter motion on hypersurface M at Raﬁv

by means of the matrix representation of the curve n given by (4).

Definition 3.1. Let B be the matrix representation of the curve 7(s) on
M and C be the 8 x 1 real matrix depends on a real parameter s at Rim. Then
the one-parameter motion on M is defined by

Y| | B C X
1110 1 1|’
or it can be expressed as
(5) Y =BX +C.

By differentiating of (5) with respect to s, we get following equality
Y = BX +C + BX,
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where Y, BX 4+ C and BX are the absolute velocity, the sliding velocity and
the relative velocity of the point X, respectively. When the sliding velocity is
equal to zero for all s, we find the pole points of the motion. That is, we find
the pole points of the motion by the solition of the equation (6)

(6) BX+C=0.
See for more details [3].
Theorem 3.2. The equation (5) is a homothetic motion on M.

Proof. Let the curve n be on M. In that case it does not pass through the
origin. So the matrix given by (4) can be expressed as:

o o—anz —Bns aBfna —ams ayne Bynr  —aByns A
R h R R R R h R
n2 n1 —Bna  =Bns  —yme —IMs  Byms Bynz
h h 3 R h h h R
UE e/ Y i —amz  —ymr  oams —=7s ane
h h h h h h h h
’%4 ’;TS n2 th *71778 *7;77 —Me *’}YL%
B=h N5 —Q1e —élrw afns m —an,  —fns afn, = hA,
h h B h h B
U 5 —Bns —gm n2 L —gm —Bns
h h 3 R h h n 3
nr —os 05 —ans n3 —ang 01 —ans
h 3 h h h h, h h
n8 Uid 76 05 N4 n3 n2 L
- h h h h h h h h -
where
h : ITCR—-R

s - fﬂS)=ﬁhﬂ8ﬂ\=’v%%4-an§4-ﬁn§+—aﬂn24-vn§4-a7n§4-67n?+-a67n§7é&
Since n(s) € M, it satisfies
M7 + amang — 1305 — anane = 0,

mna +YNsns — n2m3 — Menr = 0,
e + Bnsng — n2ns — Brnanr = 0.

By using these equalities, we see that the matrix A in (7) is a semi-orthogonal
matrix. Thus it holds

ATeA =¢ and det A =1,

in here € is the signature matrix associated with the metric g and it is as:

10 0 0 0 0 O 0
0o 0O O 0 0 O 0
00 B 0 0 0 O 0
o 00 0 ap 0 0 O 0
00 0 0 v 0 O 0
00 0 0 0 ay O 0
000 0O 0 0 py O
000 0O 0O 0 0 aopy
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Hence A is a semi-orthogonal matrix, h is the homothetic scale and C' is the
translation matrix. Thus the equation (5) becomes a homothetic motion. [

Remark 3.3. In this paper, we suppose that he norm of the curven € RZM
is positive, that is, n} + ans + Bn3 + aBni +ynz + ayng + Byn? + aBynz > 0.

Corollary 3.4. Let n(s) be a curve on 507[57 N M . In that case one-
parameter motion on M defined by (5) is a general motion forms of a rotation
and a translation.

Proof. Let n(s) be a curve lying on both S;B7 and M. So we have
1Y+ o3 + B + aBni + g + ayng + By + aByng = 1.

Then the matrix B given by (4) determines a semi orthogonal matrix. So the
motion defined by (5) becomes a general motion. O

Theorem 3.5. Let 7(s) be a unit speed curve and 7(s) be on M, then B
is a semi-orthogonal matrix in R 5 .
Proof. Since 7 is a unit speed curve
0+ o + B3 + aBi + i + avig + B + afyig =1,
and n(s) € M, it occurs
My + anj2ns — 1315 — anaie = 0,
mna + 1578 — 12m3 — Vet = 0,
e + Bnsns — 1215 — Brarr = 0.
Then the matrix B holds BTeB = ¢ and det B = 1. So it becomes a semi
orthogonal matrix in RS ;. O

Theorem 3.6. If the curve n is a unit velocity curve and 7(s) € M, then
the motion defined by the matrix B is a regular motion, and it does not depend
on h.

Proof. From Theorem (3.5), we know that Bisa semi-orthogonal matrix in

Rim. So the motion determined by the matrix B becomes a regular motion.
Since det B = 1, it does not depend on h. O

Theorem 3.7. Let the curve 1 be a unit speed curve on M whose the
tangent vector 7(s) are on M. Then the pole point of the motion defined by
(5)is X = —B~C.

Proof. If the curve 7 is on M, from Theorem (3.2), we know that the equa-
tion (5) is a homothetic motion. Also, since the curve 7 is a unit speed curve
and its tangent vector belongs to M, from Theorem (3.5) det B = 1 and it
means that there is inverse of the matrix B and only one solution of the equa-
tion (6). Then the pole point of the motion is found as X = —B~'C. O
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8

4. Examples of Homothetic Motions on Hypersurface M at R By

In this paper, we support the theory in the paper with some examples.

4.1. Case Il a=0=v9=1

If we take as « = 8 = = 1, the hypersurface M becomes at eight dimen-
sional Euclidean space R® and it is given by

_ 8 . _
_ z = (Zla22723724725726727728) ER . le7+2228 — Z3%5 T R4%6 _07
2124 + 2528 — 2223 — 2627 = 0, 2126 + 2328 — 2025 — 2427 = 0, z # 0.

Example 4.1. Let n: I CR — M C R® be a curve given by
cos B (s)cosd (s) +icosf(s)sind (s)
+jcosf(s)cosd (s)+ijcosh(s)sind (s)
+ksin® (s)cosd (s) + iksind (s)sind (s) ’
+jksind (s)cosd (s) + ijksinf (s)sind (s)

_ L

@) n(s) NG

h(s)

where 0, 6 : I C R — R are differentiable functions. By using (4) and (8)
the matrix B is a homothetic matrix in here h is a homothetic scale. Also,
if h(s) = 1 in (8), then the curve 7 is on unit sphere S” and the matrix B
becomes a rotation matrix in R®. Now let find some special examples by using
the example given by (8).

If we get as 6 (s) = as and 6 (s) = bs, a,b are real numbers

_ 1 o [ o8 (as) cos (bs) , cos (as) sin (bs) , cos (as) cos (bs) , cos (as) sin (bs) ,
n(s) = V2 (5) ( sin (as) cos (bs) , sin (as) sin (bs) , sin (as) cos (bs) , sin (as) sin (bs) > ’

If we have as 0 (s) = § and 6 (s) = s, we obtain the following curve

n(s) = ih(s) (cos s,sin s, cos s, sin s, cos s, sin s, cos s, sin s) .

If we get as 0 (s) = s and § (s) = T,

n(s) = ih(s) (cos s, cos s, cos s, COS 8, sin s, sin s, sin s, sin ) .

If we take as 0 (s) =0 and 0 (s) = s,
1

n(s) = \ﬁ

If we take as 6 (s) = s and 6 (s) =0,

h(s) (cos s, sin s, cos s,sin s,0,0,0,0) .

n(s) = —=h(s) (coss,0,cos s,0,sin s,0,sin s,0) .

V2
Example 4.2. Let n: I C R — M C R® be a curve given by
(9) n(s) = h(s) (coss + isins).
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By using (4) and (9), the matrix B becomes the matrix of the homothetic
motion. If we take as h(s) =1, then we get

(10) n(s) = coss +isins.

By using (4) and (10), we obtain the matrix as :

coss —sins 0 0 0 0 0 0
sins coss 0 0 0 0 0 0
0 0 coss —sins 0 0 0 0
B 0 0 sins coss 0 0 0 0
0 0 0 0 coss —sins 0 0
0 0 0 0 sins coss 0 0
0 0 0 0 0 0 coss —sins
0 0 0 0 0 0 sins coss

This matrix is a rotational matrix in R® which leaves the planes Ox1x2, Oz,
Oxsxg, Oxrxg invariant. Since the curve given by (10) is unit speed and its
tangent vector is on M, the derivative of the above matrix is orthogonal matrix,
too.

4.2. Case ITa=4=1,v= -1

For o« = 8 =1 and v = —1, M is a hypersurface in eight dimensional
pseudo-Euclidean space with index 4 R§ and it is given by

_ 8 . _
M = z = (21,22,23724,25726727,28) € R4 D 2127 + 2928 — 2325 — 2426 = 0,
2124 — 2528 — 2923 + 2627 = 0, 2126 + 2328 — 2225 — 2427 =0, 2 # 0,

Example 4.3. Let 1) be a curve on M at RS.

cosh 6 (s) cosd (s) +icoshf (s)sind (s)
(1) n(s) = 1 () +j cosh @ (s)cosd (s)+ ijcoshé (s)sind (s)
V2 +ksinh 0 (s) cosd (s) + ik sinh 6 (s) sin  (s) ’
+jksinh @ (s) cosd (s) + ijksinh 0 (s) sin d (s)
where 0, 6 : I C R — R are smooth functions. By using (4) and (11), the
matrix B determines a homothetic motion, in here h is a homothetic scale.
If h(s) = 1, then the curve n is on unit sphere S} at R§ and B becomes a
rotational matrix in R§. Now let investigate some special examples by using
the example given by (11).
If we get as 0 (s) = as and 0 (s) = bs, a,b are real numbers,

U(S)Zﬁ
If0(s) =s and § (s) = 7,

1
n(s)= §h(s) (cosh s, cosh s, cosh s, cosh s, sinh s, sinh s, sinh s, sinh s) .

1 h(s) ( cosh (as) cos (bs) , cosh (as) sin (bs) , cosh (as) cos (bs) , cosh (as) sin (bs) ,
sinh (as) cos (bs) ,sinh (as) sin (bs) , sinh (as) cos (bs) , sinh (as) sin (bs)

).
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If 0 (s) =0 and 6 (s) = s,
1 (s) = —=h(s) (cos s,sin s, cos s,sin s, 0,0,0,0) .

If 0 (s) = s and § (s) = 0,
1

n(s) = \ﬁh(s) (cosh s,0,cosh s, 0,sinh s,0,sinh s,0) .

Example 4.4. Let n be a curve on M as:
(12) 7 (s) = h(s) (cosh s + ijsinhs).
The matrix representation of (12) describes a homothetic motion. If we get as
h(s) =1, we have the following curve
(13) 1 (s) = cosh s + ijsinh s,
the matrix B associated with the curve given by (13) is a real semi-orhogonal
matrix, that is, it becomes a rotational matrix as:

cosh s 0 0 0 0 0 0 sinh s
0 cosh s 0 0 0 0 —sinh s 0
0 0 cosh s 0 0 —sinh s 0 0
B— 0 0 0 coshs sinhs 0 0 0
0 0 0 sinhs coshs 0 0 0
0 0 —sinh s 0 0 cosh s 0 0
0 —sinh s 0 0 0 0 cosh s 0
sinh s 0 0 0 0 0 0 cosh s

The above matrix is a rotational matrix in R§ which leaves the planes Oxyxs,
Oxsx7, Oxsxg, Oxgxs invariant. Also, since the curve given by (13) is unit
speed and its tangent vector is on M, the derivative of the above matrix B is
a real semi-orthogonal matrix, too.

4.3. Case Il a=-1, f=~v=1

If we choose as « = —1, f = v =1, M is a hypersurface in eight dimensional
pseudo Euclidean space with index 4 R§ and it is given by

— 8 . —
M = { = (217227237’24725726727728) € R(X[jry 12127 — 2228 — 2325 + 2426 = 07 }

2124 + 2528 — 2023 — 2627 = 0, 2126 + 2328 — 2025 — 2427 =0, 2 #0

Example 4.5. Let 1 be a curve on M at R§.
cosh 6 (s) coshd (s) +icoshf (s)sinhd (s)
+j cosh @ (s)coshd (s)+ijcosh (s)sinhd (s)
—ksinh 6 (s) sinh 6 (s) — ik sinh @ (s) cosh § (s) ’
+jksinh 6 (s)sinh § (s) + ijksinh @ (s) cosh d (s)
where 0, 6 : I C R — R are smooth functions. By using (4) and (14), the

matrix B associated with the curve n is a homothetic motion matrix and h is
a homothetic scale. If h(s) = 1, then the curve 1 is on unit sphere Sj at R}

1

(14) n(s) = NG

h(s)
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and the matrix B determines a rotational matrix in R§. Now let research some
special examples by using the example given by (14).
If we get as 6 (s) = as and § (s) = bs, a, b are real numbers,

_ b 5 cosh (as) cosh (bs) , cosh (as) sinh (bs) , cosh (as) cosh (bs) , cosh (as) sinh (bs) ,
n(s) = \/ﬁh( ) ( — sinh (as) sinh (bs) , — sinh (as) cosh (bs) , sinh (as) sinh (bs) , sinh (as) cosh (bs) ) ’
If0(s) = s and § (s) = 0,
1

n(s) = ﬁh(s) (cosh s,0,cosh s,0,0 — sinh s,0,sinh s) .

If0 (s) =0 and 6 (s) = s,

1
1 (s) = —=h(s) (cosh s, sinh s, cosh s, sinh s, 0,0, 0,0) .

V2

5. Conclusion

In this paper, using the generalized tricomplex numbers, we determine a
motion on the hypersurface M in eight dimensional generalized linear space

R(Sxﬁfy and prove that this is a homothetic motion. For some special cases of

the real numbers «, 8 and 7, we support the theory in this paper with some
examples of homothetic motions in R® and R§. Also, we give some algebraic
properties of the generalized tricomplex numbers.
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