DOI QR코드

DOI QR Code

IDEALS OF SHEFFER STROKE HILBERT ALGEBRAS BASED ON FUZZY POINTS

  • Young Bae Jun (Department of Mathematics Education, Gyeongsang National University) ;
  • Tahsin Oner (Department of Mathematics, Ege University)
  • Received : 2023.05.22
  • Accepted : 2023.09.21
  • Published : 2024.03.20

Abstract

The main objective of the study is to introduce ideals of Sheffer stroke Hilbert algebras by means of fuzzy points, and investigate some properties. The process of making (fuzzy) ideals and fuzzy deductive systems through the fuzzy points of Sheffer stroke Hilbert algebras is illustrated, and the (fuzzy) ideals and the fuzzy deductive systems are characterized. Certain sets are defined by virtue of a fuzzy set, and the conditions under which these sets can be ideals are revealed. The union and intersection of two fuzzy ideals are analyzed, and the relationships between aforementioned structures of Sheffer stroke Hilbert algebras are built.

Keywords

Acknowledgement

The authors express their gratitude to the anonymous reviewers for their perceptive and invaluable suggestions, as well as for their constructive commentary, which greatly contributed to enhancing the current state of the article. Moreover, the authors wish to extend their appreciation to the Editor-in-Chief of the journal for their valuable feedback and insights.

References

  1. M. Baczynski, P. Berruezo, P. Helbin, S. Massanet, W. Niemyska, and D. Ruiz-Aguilera, On the Sheffer stroke operation in fuzzy logic, Fuzzy Sets Syst 431 (2022), 110-128.
  2. D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe J. Math. 2 (1985), 29-35.
  3. D. Busneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe J. Math. 5 (1988), 161-172.
  4. D. Busneag, Hertz algebras of fractions and maximal Hertz algebras of quotients, Math. Japon. 39 (1993), 461-469.
  5. I. Chajda, The lattice of deductive systems on Hilbert algebras, Southeast Asian Bull. Math. 26 (2002), 21-26.
  6. I. Chajda, R. Halas, and Y. B. Jun, Annihilators and deductive systems in commutative Hilbert algebras, Comment. Math. Univ. Carol. 43 (2002), no. 3, 407-417.
  7. I. Chajda, Sheffer operation in ortholattices, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 44 (2005), no. 1, 19-23.
  8. I. Chajda, R. Halas, and H. Langer, Operations and structures derived from non-associative MV-algebras, Soft Computing 23 (2019), no. 12, 3935-3944.
  9. A. Diego, Sur les algebres de Hilbert, Collection de Logigue Math. Ser. A, Ed. Hermann, Paris 21 (1966), 1-52.
  10. J. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174.
  11. P. Helbin, W. Niemyska, P. Berruezo, S. Massanet, D. Ruiz-Aguilera, and M. Baczynski, On fuzzy Sheffer stroke operation in Artificial Intelli-gence and Soft Computing, Springer International Publishing, 2018, pp.642-651.
  12. P. M. Idziak, Lattice operation in BCK-algebras, Math. Japon. 29 (1984), no. 6, 839-846.
  13. Y. B. Jun, Extensions of fuzzy deductive systems in Hilbert algebras, Fuzzy Sets Syst. 79 (1996), 263-265.
  14. Y. B. Jun, Deductive systems of Hilbert algebras, Math. Japon. 43 (1996), no. 1, 51-54.
  15. Y. B. Jun and T. Oner, Weak filters and multipliers in Sheffer stroke Hilbert algebras, Bull. Belg. Math. Soc.- Simon Stevin, preprint (2023), submitted.
  16. Y. B. Jun and T. Oner, Fuzzy deductive systems in Sheffer stroke Hilbert algebras, ces India Section A - Physical Sciences Abbreviation, preprint, submitted.
  17. V. Kozarkiewicz and A. Grabowski, Axiomatization of Boolean algebras based on Sheffer stroke, Formalized Mathematics 12 (2004), no. 3, 355-361.
  18. W. McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist, and L. Wos, Short single axioms for Boolean algebra, J. Autom. Reason. 29 (2002), no. 1, 1-16.
  19. W. Niemyska, M. Baczynski and S. Wasowicz, Sheffer stroke fuzzy implications in Advances in Fuzzy Logic and Technology, 13-24, Springer International Publishing, 2017.
  20. T. Oner, T. Katican, and A. Borumand Saeid, Fuzzy filters of Sheffer stroke Hilbert algebras, Journal of Intelligent & Fuzzy Systems 40 (2021), no. 1, 759-772.
  21. T. Oner, T. Katican, and A. Borumand Saeid, Relation between Sheffer Stroke and Hilbert Algebras, Categories Gen. Algebraic. 14 (2021), no. 1, 245-268.
  22. T. Oner, T. Katican, and A. Borumand Saeid, BL-algebras defined by an operator, Honam Math. J. 44 (2022), no. 2, 18-31.
  23. T. Oner, T. Kalkan, and A. Borumand Saeid, Class of Sheffer stroke BCK-algebras, Analele Stiintifice ale Universitatii "Ovidius" Constanta 30 (2022), no. 1, 247-269.
  24. T. Oner, T. Katican, A. Borumand Saeid, and M. Terziler, Filters of strong Sheffer stroke non-associative MV-algebras, Analele Stiintifice ale Universitatii "Ovidius" Constanta 29 (2021), no. 1, 143-164.
  25. Z. Pawlak, Rough Sets Research Report PAS 431, Institute of Computer Science, Polish Academy of Sciences: Warsaw, Poland 1981.
  26. Z. Pawla, Rough sets, Int. J. Comput. Inf. 11 (1982), 341-356.
  27. P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599.
  28. H. Rasiowa, An algebraic approach to non-classical logics, Studies in Logic and the Foundations of Mathematics 78, North-Holland and PWN, 1974.
  29. I. Senturk and T. Oner, The Sheffer stroke operation reducts of basic algeras, Open Math. 15 (2017), 926-935.
  30. I. Senturk, A bridge construction from Sheffer stroke basic algebras to MTL-algebras, Journal of Balikesir University of Science and Technology 22 (2020), no. 1, 193-203.
  31. H. M. Sheffer, A set of five independent postulates for Boolean algebras, Trans. Am. Math. Soc. 14 (1913), no. 4, 481-488.
  32. Y. Wang and B. Q. Hu, On fuzzy Sheffer strokes: New results and the ordinal sums, Fuzzy Sets Syst, Available online 13 September (2022), in press.
  33. L. A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965), no. 3, 338-353.
  34. L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inf. Sci. 8 (1975), 199-249.