DOI QR코드

DOI QR Code

Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties

  • Johanes Pramana Gentur SUTAPA (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • Ganis LUKMANDARU (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • Sigit SUNARTA (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • Rini PUJIARTI (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • Denny IRAWATI (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • Rizki ARISANDI (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • Riska DWIYANNA (Department of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • Robertus Danu PRIYAMBODO (Alumni of Faculty of Forestry, Universitas Gadjah Mada)
  • Received : 2023.10.20
  • Accepted : 2024.01.16
  • Published : 2024.03.25

Abstract

The sapwood portion of fast-growing teak is mostly ignored due to its inferior quality. One of the possibilities for utilizing sapwood waste is to convert it into activated carbon that has good adsorption capabilities. The raw materials used in this research were sapwood of 14-year-old fast-growing teak sapwood (FTS) waste, which was taken from three trees from community forests in Wonosari, Gunungkidul, Yogyakarta Special Region. FTS waste was taken from the bottom of the tree up to a height of 1.3 m. The activation process is conducted with an activation temperature of 750℃, 850℃, and 950℃. The heating duration consists of three variations: 30 min, 60 min, and 90 min. The quality evaluation parameters of activated carbon include yield, moisture content, volatile matter content, ash content, fixed carbon content, adsorption capacity of benzene, adsorption capacity of methylene blue, and adsorption capacity of iodine. The results showed that the activated carbon produced had the following quality parameters: yield of 75.61%; moisture content of 1.27%; volatile matter content of 9.98%; ash content of 5.43%; fixed carbon content of 84.58%; benzene absorption capacity of 8.58%; methylene blue absorption capacity of 87.73 mg/g; and iodine adsorption capacity of 948.19 mg/g. It can be concluded that activated carbon from FTS waste has good iodine adsorption, which fulfilled the SNI 06-3730-1995 quality standard. Due to the iodine adsorption ability of FTS waste activated carbon, the conversion of FTS waste to activated carbon is categorized as a potential method to increase the value of this material.

Keywords

Acknowledgement

This research was assisted by PT Lintang Jati Kencana and the Laboratory of Biomaterial Conversion, of the Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta, Indonesia.

References

  1. Aini, N.N., Lisminingsih, R.D., Laili, S. 2021. Coconut shell active charcoal (Cocos nucifera) as adsorbent. Journal Sains Alami 4(1): 47-53.
  2. American Society for Testing and Materials [ASTM]. 2002. Standard Practice for Proximate Analysis of Coal and Coke. ASTM D3172-89. ASTM International, West Conshohocken, PA, USA.
  3. American Society for Testing and Materials [ASTM]. 2007. Standard Test Method for Chemical Analysis of Wood Charcoal. ASTM D1762-84. ASTM International, West Conshohocken, PA, USA.
  4. Aprianis, Y. 2012. Characteristics of activated charcoal from Acacia crassicarpa stump. Jurnal Penelitian Hasil Hutan 30(4): 261-268. https://doi.org/10.20886/jphh.2012.30.4.261-268
  5. Badan Standardisasi Nasional. 1995. Arang Aktif Teknis. SNI 06-3730-1995. Badan Standardisasi Nasional, Jakarta, Indonesia.
  6. Berrocal, A., Gaitan-Alvarez, J., Moya, R., FernandezSolis, D., Ortiz-Malavassi, E. 2020. Development of heartwood, sapwood, bark, pith and specific gravity of teak (Tectona grandis) in fast-growing plantations in Costa Rica. Journal of Forestry Research 31: 667-676. https://doi.org/10.1007/s11676-018-0849-5
  7. Bestani, B., Benderdouche, N., Benstaali, B., Belhakem, M., Addou, A. 2008. Methylene blue and iodine adsorption onto an activated desert plant. Bioresource Technology 99(17): 8441-8444. https://doi.org/10.1016/j.biortech.2008.02.053
  8. Cahyani, N., Yunianti, A.D., Suhasman, Pangestu, K.T.P., Pari, G. 2023. Characteristics of bio pellets from spent coffee grounds and pinewood charcoal based on composition and grinding method. Journal of the Korean Wood Science and Technology 51(1): 23-37. https://doi.org/10.5658/WOOD.2023.51.1.23
  9. Chandra, T.C., Mirna, M.M., Sunarso, J., Sudaryanto, Y., Ismadji, S. 2009. Activated carbon from durian shell: Preparation and characterization. Journal of the Taiwan Institute of Chemical Engineers 40(4): 457-462. https://doi.org/10.1016/j.jtice.2008.10.002
  10. Danish, M., Ahmad, T. 2018. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews 87: 1-21. https://doi.org/10.1016/j.rser.2018.02.003
  11. Darwis, A.R., Hartono, R., Hidayat, S.S. 2005. The percentage of heartwood and sapwood and deteramination of juvenile and mature wood in five age classes of teak (Tectona grandis L.f). Jurnal Ilmu dan Teknologi Kayu Tropis 3(1): 6-8.
  12. Dungani, R., Munawar, S.S., Karliati, T., Malik, J., Aditiawati, P. 2022. Study of characterization of activated carbon from coconut shells on various particle scales as filler agent in composite materials. Journal of the Korean Wood Science and Technology 50(4): 256-271. https://doi.org/10.5658/WOOD.2022.50.4.256
  13. Duy Nguyen, H., Nguyen Tran, H., Chao, H.P., Lin, C.C. 2019. Activated carbons derived from teak sawdust-hydrochars for efficient removal of methylene blue, copper, and cadmium from aqueous solution. Water 11(12): 2581.
  14. Erawati, E., Afifah, E.F.N. 2019. Production of activated carbon from teak sawdust (Tectona grandis L.f). In: Yogyakarta, Indonesia, Proceeding of the 17th University Research Colloquium 2023: Bidang MIPA dan Kesehatan, pp. 97-104.
  15. Etris, P.H., Ekawati, C.J. 2022. Analysis of iodine adsorption in kepok banana peel activated charcoal (Musa paradisiaca Linn). Oehonis 5(01): 57-61.
  16. Gartner, B.L. 1995. Plant Stems: Physiology and Functional Morphology. Elsevier, Amsterdam, The Netherlands.
  17. Gartner, B.L., Meinzer, F.C. 2005. Structure-Function Relationships in Sapwood Water Transport and Storage. In: Vascular Transport in Plants, Ed. by Holbrook, N.M. and Zwieniecki, M.A. Academic Press, Cambridge, MA, USA.
  18. Hartanto, S., Ratnawati, R. 2010. Synthesis of activated carbon from palm oil shell by chemical activation method. Jurnal Sains Materi Indonesia 12(1): 12-16.
  19. Hartoyo, H. 1988. Gasification of charcoal in fluidized bed for manufacturing active carbon. Jurnal Penelitian Hasil Hutan 5(1): 17-22.
  20. Hendra, D., Pari, G. 1999. Production of activated charcoal from empty palm fruit bunches. Jurnal Penelitian Hasil Hutan 17(2): 113-122.
  21. Hudaya, N., Hartoyo, H. 1990. Preparation of activated charcoal from grain shells of forest and farm crops. Jurnal Penelitian Hasil Hutan 8(4): 146-149.
  22. Hwang, U.T., Bae, J., Lee, T., Hwang, S.Y., Kim, J.C., Park, J., Choi, I.G., Kwak, H.W., Hwang, S.W., Yeo, H. 2021. Analysis of carbonization behavior of hydrochar produced by hydrothermal carbonization of lignin and development of a prediction model for carbonization degree using near-infrared spectroscopy. Journal of the Korean Wood Science and Technology 49(3): 213-225. https://doi.org/10.5658/WOOD.2021.49.3.213
  23. Idrus, R., Lapanporo, B.P., Putra, Y.S. 2013. Effect of activation temperature on the quality of coconut shell-based activated carbon. Prisma Fisika 1(1): 50-55.
  24. Imawati, A., Adhitiyawarman. 2015. Maximum adsorption capacity of Pb(II) ions by HCl and H3PO4 activated coffee grounds activated charcoal. Jurnal Kimia Khatulistiwa 4(2): 50-61.
  25. Ismadji, S., Sudaryanto, Y., Hartono, S.B., Setiawan, L.E.K., Ayucitra, A. 2005. Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: Pore structure development and characterization. Bioresource Technology 96(12): 1364-1369. https://doi.org/10.1016/j.biortech.2004.11.007
  26. Jamilatun, S., Isparulita, I.D., Putri, E.N. 2014. Characteristics of activated charcoal from coconut shell with H2SO4 activation with temperature and time variations. In: Pekanbaru, Indonesia, Simposium Nasional Teknologi Terapan (SNTT).
  27. Ju, Y.M., Lee, H.W., Kim, A., Jeong, H., Chea, K.S., Lee, J., Ahn, B.J., Lee, S.M. 2020. Characteristics of carbonized biomass produced in a manufacturing process of wood charcoal briquettes using an open hearth kiln. Journal of the Korean Wood Science and Technology 48(2): 181-195. https://doi.org/10.5658/WOOD.2020.48.2.181
  28. Jun, T.Y., Arumugam, S.D., Latip, N.H.A., Abdullah, A.M., Latif, P.A. 2010. Effect of activation temperature and heating duration on physical characteristics of activated carbon prepared from agriculture waste. Environment Asia 3: 143-148.
  29. Komarayati, S., Gusmailina, G., Hendra, D. 1997. Making activated charcoal from teak sawdust. Jurnal Penelitian Hasil Hutan 15(2): 94-100.
  30. Kwon, G.J., Kim, A.R., Lee, H.S., Lee, S.H., Hidayat, W., Febrianto, F., Kim, N.H. 2018. Characteristics of white charcoal produced from the charcoal kiln for thermotherapy. Journal of the Korean Wood Science and Technology 46(5): 527-540. https://doi.org/10.5658/WOOD.2018.46.5.527
  31. Liu, Q.S., Zheng, T., Li, N., Wang, P., Abulikemu, G. 2010. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Applied Surface Science 256(10): 3309-3315. https://doi.org/10.1016/j.apsusc.2009.12.025
  32. Lubis, N. 2021. Absorbency of activated charcoal of bamboo and coconut shells as food coloring sold in the market. Para Pemikir: Jurnal Ilmiah Farmasi 10(2): 41-46.
  33. Lukmandaru, G., Sayudha, I.G.N.D. 2011. Extractive composition on juvenile teak wood. In: Sulistyo, J., Widyorini, R., Lukmandaru, G., Rofii, M.N., Prasetyo, V.E. (eds), Bogor, Indonesia, Prosiding Seminar Nasional Masyarakat Peneliti Kayu Indonesia (MAPEKI) XIV, pp. 361-366.
  34. Lukmandaru, G., Vembrianto, K., Gazidy, A.A. 2012. Antioxidant activity of methanol extracts of Mangifera indica L., Mangifera foetida Lour, and Mangifera odorata Griff wood. Jurnal Ilmu Kehutanan 6(1): 18-29. https://doi.org/10.22146/jik.3306
  35. Malik, U., Syech, R. 2013. Effect of activation time on chemical composition and structure and quality of jelutung sawdust activated charcoal. In: Lampung, Indonesia, Prosiding Semirata FMIPA Universitas Lampung.
  36. Maulina, S., Handika, G., Iswanto, A.H. 2020. Quality comparison of activated carbon produced from oil palm fronds by chemical activation using sodium carbonate versus sodium chloride. Journal of the Korean Wood Science and Technology 48(4): 503-512. https://doi.org/10.5658/WOOD.2020.48.4.503
  37. Noszko, L.H., Bota, A., Simay, A., Nagy, L.G. 1984. Preparation of activated carbon from the by-products of agricultural industry. Periodica Polytechnica Chemical Engineering 28(3-4): 293-297.
  38. Nusratullah, N., Aminah, S. 2020. Activated charcoal of teak wood sawdust (Tectona grandis L f) as an adsorbent material in refining used cooking oil. Media Eksakta 16(1): 40-48. https://doi.org/10.22487/me.v16i1.732
  39. Onwumelu, D.C. 2022. A comparative analysis of activated carbons from African Teak (Iroko) wood and coconut shell in palm oil bleaching. International Journal of Progressive Sciences and Technologies 32(1): 383-396.
  40. Oteng-Amoako, A.A. 2004. Making the grade. ITTO Tropical Forest Update 14(1): 6-7.
  41. Pari, G., Hendra, D., Pasaribu, R.A. 2008. Quality improvement of activated charcoal from mangium bark. Jurnal Penelitian Hasil Hutan 26(3): 214-227. https://doi.org/10.20886/jphh.2008.26.3.214-227
  42. Pari, G., Sofyan, K., Syafii, W., Buchari, B. 2005. The effect of activation time on the chemical structure and quality of activated charcoal of sengon sawdust. Jurnal Penelitian Hasil Hutan 23(3): 207-218. https://doi.org/10.20886/jphh.2005.23.3.207-218
  43. Park, S.H., Jang, J.H., Wistara, N.J., Hidayat, W., Lee, M., Febrianto, F. 2018. Anatomical and physical properties of Indonesian bamboos carbonized at different temperatures. Journal of the Korean Wood Science and Technology 46(6): 656-669. https://doi.org/10.5658/WOOD.2018.46.6.656
  44. Priyambodo, R.D. 2023. Effect of Activation Temperature and Activation Duration on the Quality of Activated Charcoal of Fast-growing Teak Sapwood (Tectona grandis Linn.). Universitas Gadjah Mada, Yogyakarta, Indonesia.
  45. Rakhmawati, A. 2019. Characteristics of Biotrop Teak Wood in Axial and Radial Directions. Institut Pertanian Bogor, Bogor, Indonesia.
  46. Sadir, M., Hermawan, D., Budiman, I., Pari, G., Sutiawan, J. 2022. Characteristics and pollutant adsorption capacity of activated charcoal made. Jurnal Penelitian Hasil Hutan 40(1): 7-18. https://doi.org/10.20886/jphh.2022.40.1.7-18
  47. Sahara, E., Dahliani, N.K., Manuaba, I.B.P. 2017. Production and characterization of activated charcoal from gumitir (Tagetes erecta) stems with NaOH activator. Jurnal Kimia 11(2): 174-180. https://doi.org/10.24843/JCHEM.2017.v11.i02.p12
  48. Savero, A.M., Wahyudi, I., Rahayu, I.S., Yunianti, A.D., Ishiguri, F. 2020. Investigating the anatomical and physical-mechanical properties of the 8-year-old superior teakwood planted in muna island, Indonesia. Journal of the Korean Wood Science and Technology 48(5): 618-630. https://doi.org/10.5658/WOOD.2020.48.5.618
  49. Seta, G.W., Hidayati, F., Na'iem, M. 2023. Wood physical and mechanical properties of clonal teak (Tectona grandis) stands under different thinning and pruning intensity levels planted in Java, Indonesia. Journal of the Korean Wood Science and Technology 51(2): 109-132. https://doi.org/10.5658/WOOD.2023.51.2.109
  50. Setiawan, D., Hidayat, A., Supriyadi, S., Lestari, W. 2023. Environmental ethics policy in Jepara: Optimization of handicraft designs from wood waste in the furniture industry. Journal of the Korean Wood Science and Technology 51(5): 392-409. https://doi.org/10.5658/WOOD.2023.51.5.392
  51. Sudomo, M.F.A., Hardiwinoto, S., Indrioko, S., Budiadi, B., Prehaten, D., Wibowo, A. 2021. Growth responses of Perhutani's teak plus plants age 11 years against the intensity of thinning and intercropping (case study at Bkph Begal Kph Ngawi, Perhutani, East Java). Jurnal Pemuliaan Tanaman Hutan 15(1): 13-23. https://doi.org/10.20886/jpth.2021.15.1.13-23
  52. Sudradjat, R., Tresnawati, D., Setiawan, D. 2005. Production of activated charcoal from Jatropha seed shells. Jurnal Penelitian Hasil Hutan 23(2): 143-162. https://doi.org/10.20886/jphh.2005.23.2.143-162
  53. Suherman, S., Hasanah, M., Ariandi, R., Ilmi, I. 2021. The effect of heating temperature on the characteristics and microstructure of palm oil palm activated carbon. Jurnal Industri Hasil Perkebunan 16(1): 1-9. https://doi.org/10.33104/jihp.v16i2.7127
  54. Sujarwo, W. 2009. Effect of activation time and temperature on the quality and chemical structure of bagasse activated charcoal. Jurnal Ilmu dan Teknologi Kayu Tropis 7(2): 79-84.
  55. Surest, A.H., Permana, I., Wibisono, R.G. 2010. Manufacture of activated carbon from ketapang seed shells. Jurnal Teknik Kimia 17(4): 1-11.
  56. Tewari, V.P., Mariswamy, K.M. 2013. Heartwood, sapwood and bark content of teak trees grown in Karnataka, India. Journal of Forestry Research 24: 721-725. https://doi.org/10.1007/s11676-013-0410-5
  57. Yusop, M.F.M., Aziz, A., Ahmad, M.A. 2022. Conversion of teak wood waste into microwave-irradiated activated carbon for cationic methylene blue dye removal: Optimization and batch studies. Arabian Journal of Chemistry 15(9): 104081.