Acknowledgement
This study was supported by research funding from Chosun University Dental Hospital, 2022.
References
- Faculty council of Korean association of oral and maxillofacial radiology. Oral and maxillofacial radiology. 5th ed. Seoul: Narae Pub Inc; 2015. p. 199-219.
- Mallya SM, Lam EWN. White and Pharoah's oral radiology: principles and interpretation. 8th ed. St. Louis: Elsevier; 2019. p. 132-50.
- Food and Drug Administration (FDA). The selection of patients for dental radiographic examinations. USA: FDA; c2023 [cited 2023 Nov 22]. Available from: https://www.fda.gov/radiation-emitting-products/medical-x-ray-imaging/selection-patients-dental-radiographic-examinations.
- Venkatraman S, Gowda JS, Kamarthi N. Unusual ghost image in a panoramic radiograph. Dentomaxillofac Radiol 2011; 40: 397-9. https://doi.org/10.1259/dmfr/63151190
- Sams CM, Dietsche EW, Swenson DW, DuPont GJ, Ayyala RS. Pediatric panoramic radiography: techniques, artifacts, and interpretation. Radiographics 2021; 41: 595-608. https://doi.org/10.1148/rg.2021200112
- Harvey S, Ball F, Brown J, Thomas B. 'Non-standard' panoramic programmes and the unusual artefacts they produce. Br Dent J 2017; 223: 248-52. https://doi.org/10.1038/sj.bdj.2017.707
- Monsour PA, Mendoza AR. Panoramic ghost images as an aid in the localization of soft tissue calcifications. Oral Surg Oral Med Oral Pathol 1990; 69: 748-56. https://doi.org/10.1016/0030-4220(90)90361-U
- Yeom HG, Kim JE, Huh KH, Yi WJ, Heo MS, Lee SS, et al. Development of a new ball-type phantom for evaluation of the image layer of panoramic radiography. Imaging Sci Dent 2018; 48: 255-9. https://doi.org/10.5624/isd.2018.48.4.255
- Seo YS, Yu SK. Thermoluminescent dosimetry of panoramic radiography. Oral Biol Res 2021; 45: 22-8. https://doi.org/10.21851/obr.45.01.202103.22
- Celik B, Savastaer EF, Kaya HI, Celik ME. The role of deep learning for periapical lesion detection on panoramic radiographs. Dentomaxillofac Radiol 2023; 52: 20230118.
- Song IS, Shin HK, Kang JH, Kim JE, Huh KH, Yi WJ, et al. Deep learning-based apical lesion segmentation from panoramic radiographs. Imaging Sci Dent 2022; 52: 351-7. https://doi.org/10.5624/isd.20220078
- Abdalla-Aslan R, Yeshua T, Kabla D, Leichter I, Nadler C. An artificial intelligence system using machine-learning for automatic detection and classification of dental restorations in panoramic radiography. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130: 593-602. https://doi.org/10.1016/j.oooo.2020.05.012