과제정보
이 성과는 농촌진흥청 지원을 받아 수행된 연구임(RS-2022-RD-010420).
참고문헌
- Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267. https://doi.org/10.1093/jee/18.2.265a
- Andrews, M.C., Callaghan, A., Field, L.M., Williamson, M.S., Moores, G.D., 2004. Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid, Aphis gossypii Glover. Insect Mol. Biol. 13, 555-561. https://doi.org/10.1111/j.0962-1075.2004.00517.x
- Anthony, N., Unruh, T., Ganser, D., Ffrench-Constant, R., 1998. Duplication of the Rdl GABA receptor subunit gene in an insecticide-resistant aphid, Myzus persicae. Mol. Gen. Genet. 260, 165-175. https://doi.org/10.1007/s004380050882
- Bass, C., Carvalho, R.A., Oliphant, L., Puinean, A.M., Field, L.M., Nauen, R., Williamson, M.S., Moores, G., Gorman, K., 2011. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens. Insect Mol. Biol. 20, 763-773. https://doi.org/10.1111/j.1365-2583.2011.01105.x
- Bass, C., Denholm, I., Williamson, M.S., Nauen, R., 2015. The global status of insect resistance to neonicotinoid insecticides. Pest Biochem. Physiol. 121, 78-87. https://doi.org/10.1016/j.pestbp.2015.04.004
- Bass, C., Zimmer, C.T., Riveron, J.M., Wilding, C.S., Wondji, C.S., Kaussmann, M., Field, L.M., Williamson, M.S., Nauen, R., 2013. Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proc. Natl. Acad. Sci. U. S. A. 110, 19460-19465. https://doi.org/10.1073/pnas.1314122110
- Blackman, R.L., Eastop, V.F., 2000. Aphids on the world's crops: an identification and information guide, 2nd ed. John Wiley & Sons Ltd, Chichester.
- Blackman, R.L., Eastop, V.F., 2007. Taxonomic issues. in: van Emden, H.F., Harrington, R. (Eds.), Aphids as crop pests, 2nd ed. CAB International, Wallingford, 1-36.
- Cutler, P., Slater, R., Edmunds, A.J., Maienfisch, P., Hall, R.G., Earley, F.G., Pitterna, T., Pal, S., Paul, V.L., Goodchild, J., Blacker, M., Hagmann, L., Crossthwaite, A.J., 2013. Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid. Pest Manag. Sci. 69, 607-619. https://doi.org/10.1002/ps.3413
- Davies, T.G.E., Field, L.M., Usherwood, P.N.R., Williamson, M.S., 2007. DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 59, 151-162. https://doi.org/10.1080/15216540701352042
- Devonshire, A.L., Field, L.M., Foster, S.P., Moores, G.D., Williamson, M.S., Blackman, R.L., 1998. The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 353, 1677-1684. https://doi.org/10.1098/rstb.1998.0318
- Devonshire, A.L., Moores, G.D., Chiang, C., 1983. The biochemistry of insecticide resistance in the peach-potato aphid, Myzus persicae, in: Miyamoto, J., Kearney, P.C. (Eds.), Pesticide chemistry, human welfare and the environment: proceedings of the 5th international congress of pesticide chemistry. Pergamon Press, Oxford, pp. 191-196.
- Eleftherianos, I., Foster, S.P., Williamson, M.S., Denholm, I., 2008. Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer). Bull. Entomol. Res. 98, 183-191. https://doi.org/10.1017/S0007485307005524
- Eleftherianos, I.G., Foster, S.P., Williamson, M.S., Denholm, I., 2002. Behavioural consequences of pyrethroid resistance in the peach-potato aphid, Myzus persicae (Sulzer). The BCPC Conference: Pests and diseases, Volumes 1 and 2. Proceedings of an international conference held at the Brighton Hilton Metropole Hotel, Brighton, UK, 18-21 November 2002, pp. 745-748.
- Ffrench-Constant, R.H., Anthony, N., Aronstein, K., Rocheleau, T., Stilwell, G., 2000. Cyclodiene insecticide resistance: from molecular to population genetics. Annu. Rev. of Entomol. 45, 449-466. https://doi.org/10.1146/annurev.ento.45.1.449
- Field, L.M., Devonshire, A.L., Forde, B.G., 1988. Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem. J. 251, 309-312. https://doi.org/10.1042/bj2510309
- Fontaine, S., Caddoux, L., Brazier, C., Bertho, C., Bertolla, P., Micoud, A., Roy, L., 2011. Uncommon associations in target resistance among french populations of Myzus persicae from oilseed rape crops. Pest Manag. Sci. 67, 881-885. https://doi.org/10.1002/ps.2224
- Francis, F., Vanhaelen, N., Haubruge, E., 2005. Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch. Insect. Biochem. Physiol. 58, 166-174. https://doi.org/10.1002/arch.20049
- Hlaoui, A., Chiesa, O., Figueroa, C.C., Souissi, R., Mazzoni, E., Boukhris-Bouhachem, S., 2022. Target site mutations underlying insecticide resistance in tunisian populations of Myzus persicae (Sulzer) on peach orchards and potato crops. Pest Manag. Sci. 78, 1594-1604. https://doi.org/10.1002/ps.6778
- Hu, J., Chen, F., Wang, J., Rao, W., Lin, L., Fan, G., 2023. Multiple insecticide resistance and associated metabolic-based mechanisms in a Myzus Persicae (Sulzer) population. Agronomy 13, 2276.
- Jeschke, P., Nauen, R., Gutbrod, O., Beck, M.E., Matthiesen, S., Haas, M., Velten, R., 2015. Flupyradifurone (SivantoTM) and its novel butenolide pharmacophore: structural considerations. Pestic. Biochem. Physiol. 121, 31-38. https://doi.org/10.1016/j.pestbp.2014.10.011
- Koo, H.N., An J.J., Park S.E., Kim J.I., Kim G.H., 2014. Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance. Crop Prot. 55, 91-97. https://doi.org/10.1016/j.cropro.2013.09.010
- Lee, J.M., Jeon, J.C., Kang, W.J., Kim, H.K., Park, B.Y., Koo, H.N., Kim, G.H., 2022. Analysis of point mutations associated with fenvalerate- and imidacloprid-resistant cotton aphids, Aphis gossypii (Hemiptera: Aphididae) and selection of insecticides for effective control. Korean J. Pestic. Sci. 26, 140-149. https://doi.org/10.7585/kjps.2022.26.2.140
- Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
- Margaritopoulos, J.T., Kati, A.N., Voudouris, C.C., Skouras, P.J., Tsitsipis, J.A., 2021. Long-term studies on the evolution of resistance of Myzus persicae (Hemiptera: Aphididae) to insecticides in Greece. Bull. Entomol. Res. 111, 1-16. https://doi.org/10.1017/S0007485320000334
- Martinez-Torres, D., Foster, S.P., Field, L.M., Devonshire, A.L., Williamson, M.S., 1999. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Insect Mol. Biol. 8, 339-346. https://doi.org/10.1046/j.1365-2583.1999.83121.x
- Mingeot, D., Hautier, L., Jansen, J.P., 2021. Structuration of multilocus genotypes associated with insecticide resistance of the peach potato aphid, Myzus persicae (Sulzer), in potato fields in southern Belgium. Pest Manag. Sci. 77, 482-491. https://doi.org/10.1002/ps.6045
- Moores, G.D., Devine, G.J., Devonshire, A.L., 1994. Insecticide-insensitive acetylcholinesterase can enhance esterase-based resistance in Myzus persicae and Myzus nicotianae. Pest Biochem. Physiol. 49, 114-120. https://doi.org/10.1006/pest.1994.1038
- Nabeshima, T., Kozaki, T., Tomita, T., Kono, Y., 2003. An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochem. Biophys. Res. Commun. 307, 15-22. https://doi.org/10.1016/S0006-291X(03)01101-X
- Nakao, T., Kawashima, M., Banba, S., 2019. Differential metabolism of neonicotinoids by Myzus persicae CYP6CY3 stably expressed in Drosophila S2 cells. J. Pestic. Sci. 44, 177-180. https://doi.org/10.1584/jpestics.D19-017
- Nauen, R., Denholm, I., 2005. Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch. Insect Biochem. Physiol. 58, 200-215. https://doi.org/10.1002/arch.20043
- Nauen, R., Jeschke, P., Velten, R., Beck, M.E., Ebbinghaus-Kintscher, U., Thielert, W., Wolfel, K., Haas, M., Kunz, K., Raupach, G., 2015. Flupyradifurone: a brief profile of a new butenolide insecticide. Pest Manag. Sci. 71, 850-862. https://doi.org/10.1002/ps.3932
- Needham, P.H., Sawicki, R.M., 1971. Diagnosis of resistance to organophosphorus insecticides in Myzus persicae (Sulz.). Nature 230, 125-126. https://doi.org/10.1038/230125a0
- Oh, J.H., 2012. Molecular detection of toxicodynamic and metabolic factors associated with the pyrethroid and carbamate resistance in Myzus persicae (Sulzer). Master's Thesis, Seoul National University.
- Panini, M., Anaclerio, M., Puggioni, V., Stagnati, L., Nauen, R., Mazzoni, E., 2015. Presence and impact of allelic variations of two alternative s-kdr mutations, M918T and M918L, in the voltage-gated sodium channel of the green peach aphid Myzus persicae. Pest Manag. Sci. 71, 878-884. https://doi.org/10.1002/ps.3927
- Papadimitriou, F., Folia, M., Ilias, A., Papapetrou, P., Roditakis, E., Bass, C., Vontas, J., T Margaritopoulos, J., 2022. Flupyradifurone resistance in Myzus persicae populations from peach and tobacco in Greece. Pest Manag. Sci. 78, 304-312. https://doi.org/10.1002/ps.6637
- Puinean, A.M., Foster, S.P., Oliphant, L., Denholm, I., Field, L.M., Millar, N.S., Williamson, M.S., Bass, C., 2010. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLOS Genet. 6, e1000999.
- Rauch, N., Nauen, R., 2003. Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Arch. Insect Biochem. Physiol. 54, 165-176. https://doi.org/10.1002/arch.10114
- Slater, R., Paul, V.L., Andrews, M., Garbay, M., Camblin, P., 2012. Identifying the presence of neonicotinoidresistant peach-potato aphid (Myzus persicae) in the peach-growing regions of southern France and northern Spain. Pest Manag. Sci. 68, 634-638. https://doi.org/10.1002/ps.2307
- Unruh, T., Knight, A., Bush, M.R., 1996. Green peach aphid (Homoptera: Aphididae) resistance to endosulfan in peach and nectarine orchards in Washington State. J. Eco. Entomol. 89, 1067-1073. https://doi.org/10.1093/jee/89.5.1067
- Voudouris, C.C., Williamson, M.S., Skouras, P.J., Kati, A.N., Sahinoglou, A.J., Margaritopoulos, J.T., 2017. Evolution of imidacloprid resistance in Myzus persicae in Greece and susceptibility data for spirotetramat. Pest Manag. Sci. 73, 1804-1812. https://doi.org/10.1002/ps.4539
- Wang, R., Wang, J., Che, W., Fang, Y., Luo, C., 2020. Baseline susceptibility and biochemical mechanism of resistance to flupyradifurone in Bemisia tabaci. Crop Prot. 132, 105132.
- Williamson, M.S., Martinez-Torres, D., Hick, C.A., Devonshire, A.L., 1996. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet. 252, 51-60. https://doi.org/10.1007/BF02173204