DOI QR코드

DOI QR Code

국내 기상 조건을 고려한 자유공간 광통신 단말기 설계

Design of Free-space Optical Communication Terminal Considering for Korean Domestic Weather Conditions

  • 송하준 (국방과학연구소 지상기술연구원) ;
  • 장희숙 (국방과학연구소 지상기술연구원) ;
  • 윤태현 (국방과학연구소 지상기술연구원)
  • Hajun Song (Ground Technology Research Institute, Agency for Defense Development) ;
  • Heesuk Jang (Ground Technology Research Institute, Agency for Defense Development) ;
  • Taehyun Yoon (Ground Technology Research Institute, Agency for Defense Development)
  • 투고 : 2023.08.23
  • 심사 : 2024.02.07
  • 발행 : 2024.04.05

초록

Modern military operations rely heavily on broadband communication and data transmission. Recently, the rising use of intelligent unmanned technology necessitates more frequencies. Free-space optical(FSO) communication can offer high-data-rate communications with high security and no need for licensing. Therefore, the FSO communication holds significant interest and potential in the defense industry. In this paper, we present design of a FSO communication terminal taking Korean domestic weather conditions into account. The domestic atmospheric attenuation is analyzed using several models and two-year meteorological information for a city in Korea, and this analysis is utilized to design the FSO communication terminal. The design results were verified using an FSO communication test bed, and we achieved an Ethernet bandwidth of approximately 1.86 Gbps at a distance of 1.3 km with the optical amplifier output power of the test bed set to about 20 dBm.

키워드

과제정보

이 논문은 2023년 정부의 재원으로 수행된 연구 결과임.

참고문헌

  1. Q. Huang, D. Liu, Y. Chen, Y. Wang, J. Tan, W. Chen, J. Liu and N. Zhu, "Secure free-space optical communication system based on data fragmentation multipath transmission technology," Optics Express, Vol. 26, No. 10, pp. 13536-13542, 2018. https://doi.org/10.1364/OE.26.013536
  2. J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody and R. A. Nichols, "Free-Space Optical Communications for Next-generation Military Networks," IEEE Communications Magazine, Vol. 44, No. 11, pp. 46-51, 2006. https://doi.org/10.1109/MCOM.2006.248164
  3. S. Kumar and N. Sharma, "Emerging Military Applications of Free Space Optical Communication Technology: A Detailed Review," Journal of Physics: Conference Series, Vol. 2161, No. 1, p. 012011, 2022.
  4. H. Song, H. S. Koh, Y. J. Kwon, H. Jang, T. Yoon, and C. J. Lee, "A Design of a Terminal for Terrestrial Free Space Laser Communications," KIMST Annual Autumn Conference Proceedings, Daejeon, Korea, pp. 634-635, 2022.
  5. V. V. Mai, D. T. Ha, and H. Kim, "Link Availability of Terrestrial Free-space Optical Communiction Systems in Korea," Korean Journal and Photonics, Vol. 29, No. 2, pp. 77-84, 2018.
  6. I. Kim, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, pp. 26-37, 2001.
  7. S. Bendersky, N. S. Kopeika, and N. Blaunstein, "Atmospheric optical turbulence over land in Middle East coastal environments: prediction modeling and measurements," Applied Optics, Vol. 43, pp. 4070-4079, 2004. https://doi.org/10.1364/AO.43.004070
  8. D. Sadot and N. S. Kopeika, "Forecasting optical turbulence strength on basis of macroscale meteorology and aerosols: models and validation," Optics Engineering, Vol. 31, pp. 200-212, 1992. https://doi.org/10.1117/12.56059
  9. BOUCHET. Free-Space Optics - Propagation and Communication. Hermes Science Publishing, 2006.
  10. L. Liu, M. Safari, S. Hranilovic, "Rate-adaptive FSO communication via rate-compatible punctured LDPC codes," IEEE International Conference on Communications, Budapest, Hungary, pp. 3948-3952, 2013.
  11. A. Billaud, A. Orieux, F. G. Agis, K. Saab, S. Bernard, T. Michel, D. Allious, O. Pinel, G. Labroille, "Free space optical link demonstration using multi-plane light conversion turbulence mitigation," Proc. SPIE PC11993, Free-Space Laser Communications XXXIV, PC1199302, 2022.
  12. T. D. Katsilieris, G. P. Latsas, H. E. Nistazakis, and G. S. Tombras, "An Accurate Computational Tool for Performance Estimation of FSO Communication Links over Weak to Strong Atmospheric Turbulent Channels," Computation, Vol. 5, No. 1, 5010018, pp. 1-16, 2017. https://doi.org/10.3390/computation5010018
  13. M. Rouissat, A. R. Borsali, and M. E. Chiak-Bled, "Free space optical channel characterization and modeling with focus on Algeria weather conditions," International Journal of Computer Network and Information Security, Vol. 3, pp. 17-23, 2012. https://doi.org/10.5815/ijcnis.2012.03.03
  14. H. Kaushal and G. Kaddoum, "Optical communication in space: challenges and mitigation techniques," IEEE Communications Surveys and Tutorials, Vol. 19, pp. 57-96, 2016. https://doi.org/10.1109/COMST.2016.2603518
  15. S. P. Maswikaneng, S. O. Adebusola, P. A. Owolawi, and S. O. Ojo, "Estimating effect of total specific atmospheric attenuation on performance of FSO communication link in South Africa," Journal of Communications, Vol. 17, No. 7, pp. 498-509, 2022. https://doi.org/10.12720/jcm.17.7.498-509
  16. M. Chen, C. Liu, and H. Xian, "Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics," Applied Optics, Vol. 54, No. 29, pp. 8722-8726, 2015. https://doi.org/10.1364/AO.54.008722