DOI QR코드

DOI QR Code

F-CONTRACTION IN PARTIALLY ORDERED b-METRIC LIKE SPACES

  • Om Prakash Chauhan (Department of Applied Mathematics, Jabalpur Engineering College) ;
  • Vishal Joshi (Department of Applied Mathematics, Jabalpur Engineering College) ;
  • Saurabh Singh (Department of Computer Science and Engineering, Jabalpur Engineering College)
  • Received : 2023.09.11
  • Accepted : 2023.10.06
  • Published : 2024.02.28

Abstract

In this article, we utilize the concepts of hybrid rational Geraghty type generalized F-contraction and to prove some fixed point results for such mappings are in the perspective of partially ordered b-metric like space. Some innovative examples are also presented which substantiate the validity of obtained results. The example is also authenticated with the help of graphical representations.

Keywords

References

  1. M. Abbas, T. Nazir & S. Romaguera: Fixed point results for generalized cyclic contraction mappings in partial metric spaces. RACSAM 106 (2012), 287-297. https://doi.org/10.1007/s13398-011-0051-5
  2. M.A. Alghamdi, N. Hussain & P. Salimi: Fixed point and coupled fixed point theorems on b-metric-like spaces. J. Inequal. Appl. 2013, 402 (2013). https://doi.org/10.1186/1029-242X-2013-402
  3. I. Altun, F. Sola & H. Simsek: Generalized contractions on partial metric spaces. Topology and Its Applications 157 (2010), no. 18, 2778-2785. https://doi.org/10.1016/j.topol.2010.08.017
  4. I. Altun & S. Romaguera: Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point. Applicable Analysis and Discrete Mathematics 6 (2012), no. 2, 247-256. doi:10.2298/AADM120322009A
  5. A. Amini-Harandi: Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory and Applications 2012, 2012:204. https://doi.org/10.1186/1687-1812-2012-204
  6. H. Aydi, S.H. Amor & E. Karapnar: Berinde-type generalized contractions on partial metric spaces. Abstract and Applied Analysis 2013, Article ID 312479. https://doi.org/10.1155/2013/312479
  7. H. Aydi, M. Jellali & E. Karapnar: Common fixed points for generalized α-implicit contractions in partial metric spaces, consequences and application. RACSAM 109 (2015), 367-384. https://doi.org/10.1007/s13398-014-0187-1
  8. I.A. Bakhtin: The contraction mapping principle in quasi metric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26-37.
  9. S. Chandok: Some fixed point theorems for (α, β)-admissible geraghty type contractive mappings and related results. Math Sci. 9 (2015), 127-135. https://doi.org/10.1007/s40096-015-0159-4
  10. C.F. Chen, J. Dong & C.X. Zhu: Some fixed point theorems in b-metric-like spaces. Fixed Point Theory Appl. 2015 (2015). DOI 10.1186/s13663-015-0369-3
  11. S. Czerwik: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11. https://eudml.org/doc/23748
  12. S. Czerwik: Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 263-276.
  13. R.C. Dimri & G. Prasad: Coincidence theorems for comparable generalized nonlinear contractions in ordered partial metric spaces. Commun. Korean Math. Soc. 32 (2017), no. 2, 375-387. https://doi.org/10.4134/CKMS.c160127
  14. M. Geraghty: On contractive mappings. Proc. Amer. Math. Soc. 40 (1973), 604-608. https://doi.org/10.1090/S0002-9939-1973-0334176-5
  15. S.K. Malhotra, S. Radenovic & S. Shukla: Some fixed point results without monotone property in partially ordered metric-like spaces. Journal of the Egyptian Mathematical Society 22 (2014), 83-89. https://doi.org/10.1016/j.joems.2013.06.010
  16. S.G. Matthews: Partial metric topology, in Proceeding of the 8th summer conference on General Topology and Application. Ann. New York Acad. Sci. 728 (1994), 183-197.
  17. H. Piri & P. Kumam: Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory and Appl. 2014 (2014), 210. https://doi.org/10.1186/1687-1812-2014-210
  18. G. Prasad: Fixed points of Kannan contractive mappings in relational metric spaces. J. Anal 29 (2021), 669-684. https://doi.org/10.1007/s41478-020-00273-7
  19. G. Prasad & H. Isik: On Solution of Boundary Value Problems via Weak Contractions. Journal of Function Spaces 2022 (2022), Article ID 6799205. https://doi.org/10.1155/2022/6799205
  20. N.A. Secelean: Iterated function system consisting of F-contractions. Fixed Point Theory and Appl. 2013 (2013), 277. doi:10.1166/1687-1812-2013-277
  21. D. Wardowski: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory and Appl. 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94