DOI QR코드

DOI QR Code

Possibilities for Improvement in Long-term Predictions of the Operational Climate Prediction System (GloSea6) for Spring by including Atmospheric Chemistry-Aerosol Interactions over East Asia

대기화학-에어로졸 연동에 따른 기후예측시스템(GloSea6)의 동아시아 봄철 예측 성능 향상 가능성

  • Hyunggyu Song (Department of Earth Science Education, Chungbuk National University) ;
  • Daeok Youn (Department of Earth Science Education, Chungbuk National University) ;
  • Johan Lee (Climate Research Department, National Institute of Meteorological Sciences) ;
  • Beomcheol Shin (Climate Research Department, National Institute of Meteorological Sciences)
  • 송형규 (충북대학교 지구과학교육과) ;
  • 윤대옥 (충북대학교 지구과학교육과) ;
  • 이조한 (국립기상과학원 기후연구부) ;
  • 신범철 (국립기상과학원 기후연구부)
  • Received : 2023.12.28
  • Accepted : 2024.01.19
  • Published : 2024.02.29

Abstract

The global seasonal forecasting system version 6 (GloSea6) operated by the Korea Meteorological Administration for 1- and 3-month prediction products does not include complex atmospheric chemistry-aerosol physical processes (UKCA). In this study, low-resolution GloSea6 and GloSea6 coupled with UKCA (GloSea6-UKCA) were installed in a CentOS-based Linux cluster system, and preliminary prediction results for the spring of 2000 were examined. Low-resolution versions of GloSea6 and GloSea6-UKCA are highly needed to examine the effects of atmospheric chemistry-aerosol owing to the huge computational demand of the current high resolution GloSea6. The spatial distributions of the surface temperature and daily precipitation for April 2000 (obtained from the two model runs for the next 75 days, starting from March 1, 2000, 00Z) were compared with the ERA5 reanalysis data. The GloSea6-UKCA results were more similar to the ERA5 reanalysis data than the GloSea6 results. The surface air temperature and daily precipitation prediction results of GloSea6-UKCA for spring, particularly over East Asia, were improved by the inclusion of UKCA. Furthermore, compared with GloSea6, GloSea6-UKCA simulated improved temporal variations in the temperature and precipitation intensity during the model integration period that were more similar to the reanalysis data. This indicates that the coupling of atmospheric chemistry-aerosol processes in GloSea6 is crucial for improving the spring predictions over East Asia.

1개월과 3개월 장기 예보를 지원하기 위해 기상청에서 현업운용 중인 GloSea6 기후예측시스템에는 대기 중 대기화학-에어로졸 물리과정(UKCA)이 연동되어 있지 않다. 본 연구에서는 저해상도의 GloSea6와 여기에 대기화학-에어로졸 과정을 연동시킨 GloSea6-UKCA를 CentOS 기반 리눅스 클러스터에 설치하여 2000년 봄철에 대한 예비적인 예측결과를 살펴보았다. 현업 고해상도 GloSea6 모델이 방대한 전산자원을 필요로 한다는 점을 고려할 때, 저해상도 GloSea6와 GloSea6-UKCA 모델은 대기화학-에어로졸 과정의 연동에 따른 효과를 살펴보기에 적합하다. 저해상도 GloSea6와 GloSea6-UKCA는 2000년 3월 1일 00Z부터 75일 간 구동되었으며, 두 모델이 예측한 2000년 4월 지상 기온과 일평균 강수량의 공간 분포를 ERA5 재분석자료와 비교하였다. GloSea6-UKCA가 예측한 기온과 강수 분포는 기존 GloSea6에 비해 ERA5 재분석자료에 보다 더 유사해졌다. 특히 우리나라를 포함한 동아시아 지역에 대해 과대 모의 경향이 있던 봄철 지상 기온과 일평균 강수량의 예측 결과의 개선이 주목할 만하다. 또한 적분 시간에 따른 예측된 기온과 강수량의 시계열에서도 GloSea6-UKCA가 GloSea6보다 재분석자료에 더 가까워진 시간 변화 경향을 살펴볼 수 있었다. 이는 대기화학-에어로졸 과정이 GloSea6에 연동되었을 때 동아시아지역 봄철 예측 성능이 개선될 수 있음을 보여준다.

Keywords

Acknowledgement

이 연구는 기상청 <기후 및 기후변화 감시·예측정보 응용 기술개발> (RS-2023-00241809)의 지원과 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 기초연구사업(No. NRF-2020R1A2C1006173)의 지원을 받아 수행되었습니다. 이 논문은 2023학년도 충북대학교 학술연구영역 사업의 연구비 지원에 의하여 연구되었습니다. GloSea6 모델 (© British Crown copyright [2023], the Met Office) 관련 모든 자료와 소스 코드는 영국 기상청과 대한민국 기상청 국립기상과학원으로부터 제공받았습니다. 본 논문의 완성도를 높이도록 검토 의견과 조언을 주신 편집위원님과 심사위원님들께 감사드립니다.

References

  1. Arribas, A., Glober, M., Maidens, A. et al., 2011, The GloSea4 Ensemble Prediction System for Seasonal Forecasting, Monthly Weather Review, 139, 1891-1910. https://doi.org/10.1175/2010MWR3615.1
  2. Best, M.J., Pryor, M., Clark, D.B. et al., 2011, The Joint UK Land Environment Simulator (JULES), model description-Part 1: Energy and water fluxes. Geoscientific Model Development, 4, 677-699. https://doi.org/10.5194/gmd-4-677-2011
  3. Brown, A., Milton, S., Cullen, M. et al., 2012, Unified modeling and prediction of weather and climate: A 25-year journey, Bulletin of American Meteorological Society, 93, 1865-1877. https://doi.org/10.1175/BAMS-D-12-00018.1
  4. Chang, P.H., Hwang, S.O., Choo, S.H. et al., 2021, Global Ocean Data Assimilation and Prediction System in KMA: Description and Assessment, Atmosphere, Korean Meteorological Society, 31(2), 229-240.
  5. Cho, Y.J., Lee, H.C., Lim, B.H., and Kim, S.B. et al., 2019, Classification of Weather Patterns in the East Asia Region using the K-means Clustering Analysis, Atmosphere, Korean Meteorological Society, 29(4), 451-461.
  6. Collins, W.J., Bellouin, N., Doutriaux-Boucher, M. et al., 2011, Development and evaluation of an Earth-system model-HadGEM2, Geoscientific Model Development, 4, 1051-1075. https://doi.org/10.5194/gmd-4-1051-2011
  7. Collins, W.J., Lamarque, J.F., Shulz, M. et al., 2017, AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6, Geoscientific Model Development, 10, 585-607. https://doi.org/10.5194/gmd-10-585-2017
  8. Craig, A., Valcke, S., and Coquart, L., 2017, Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geoscientific Model Development, 10(9), 3297-3308. https://doi.org/10.5194/gmd-10-3297-2017
  9. Cullen, M.J.P., 1993, The Unified Forecast/Climate Model, Meteorological Magazine, 122, 81-94.
  10. Dee, D.P., Uppala, S.M., Simmons, A.J. et al., 2011, The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137(656), 553-597. https://doi.org/10.1002/qj.828
  11. Doscher, R., Acosta, M., Alessandri, A. et al., 2022, The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6, Geoscientific Model Development, 15(7), 2973-3020. https://doi.org/10.5194/gmd-15-2973-2022
  12. Eyring, V., Bony, S., Meehl, G. A. et al., 2016, Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9(5), 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016
  13. Gang, D.W., Cho H.O., Son, S.W. et al., 2021, Evaluation of Sea Surface Temperature Prediction Skill around the Korean Peninsula in GloSea5 Hindcast: Improvement with Bias Correction, Atmosphere, Korean Meteorological Society, 31(2), 215-227.s https://doi.org/10.14191/ATMOS.2021.31.2.215
  14. Giorgetta, M.A., Jungclaus, J., Reick, C.H. et al., 2013, Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5, Journal of Advances in Modeling Earth Systems, 5, 572-597. https://doi.org/10.1002/jame.20038
  15. Hersbach, H., Bell, B., Berrisford, P. et al., 2020, The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049. https://doi.org/10.1002/qj.3803
  16. Hong, S.Y., Kwon, Y.C., Kim, T.H. et al., 2018, The Korean Integrated Model (KIM) system for global weather forecasting, Asia-Pacific Journal of Atmospheric Sciences, 54, 267-292. https://doi.org/10.1007/s13143-018-0028-9
  17. Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos sea ice model documentation and software user's manual, version 4.1. Los Alamos National Laboratory, LA-CC-06-012, 76 pp
  18. Hyun, Y.K., Lee, J., Shin, B.C. et al., 2022, The KMA Global Seasonal forecasting system (GloSea6)-Part 2: Climatological Mean Bias Characteristics, Atmosphere, Korean Meteorological Society, 32(2), 87-101.
  19. Koranne, S., 2011, Hierarchical Data Format 5: HDF5. In: Handbook of Open Source Tools, 191-200, Springer, Boston, MA, USA.
  20. Kim, H.R., Lee, J., Hyun, Y.K. et al., 2021, The KMA Global Seasonal Forecasting System (GloSea6)-Part 1: Operational System and Improvements, Atmosphere, Korean Meteorological Society, 31, 341-359.
  21. KMA (Korea Meteorological Administration), 2000, MONTHLY WEATHER REPORT. KMA, Seoul, South Korea, available at: https://data.kma.go.kr/data/publication/publicationAsosList.do?pgmNo=143 (last access: 10 Nov 2023), 130 p.
  22. KMA, 2005, Global Data Assimilation and Prediction System (GDAPS), https://www.kma.go.kr/ema/ema03/intro_modl.html, last access Dec 18th, 2023.
  23. Li, Z., Wang, Y., Guo, J. et al., 2019, East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EAST-AIRCPC), Journal of Geophysical Research: Atmospheres, 124, 13026-13054. https://doi.org/10.1029/2019JD030758
  24. Lee, S.J., Hyun, Y.K., Lee, S.M. et al., 2020a, Prediction Skill for East Asian Summer Monsoon Indices in a KMA Global Seasonal Forecasting System (GloSea5), Atmosphere, Korean Meteorological Society, 30(3), 293-309.
  25. Lee, S.M., Lee, J., Ko, A.R. et al., 2020b, Seasonal Forecasting of Tropical Storms using GloSea5 Hindcast, Atmosphere, Korean Meteorological Society, 30(3), 209-220.
  26. MacLachlan, C., Arribas, A., Peterson, K.A. et al., 2015, Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system, Quarterly Journal of the Royal Meteorological Society, 141, 1072-1084. https://doi.org/10.1002/qj.2396
  27. Madec, G., Imbard, M., 1996, A global ocean mesh to overcome the North Pole singularity, Climate Dynamics, 12, 381-388. https://doi.org/10.1007/BF00211684
  28. Madec, G., 2008: NEMO ocean engine. Note du Pole de modelisation de l'Institut Pierre-Simon Laplace 27, 300 pp.
  29. Meehl, G.A., Boer, G.J., Covey, C. et al, 2000, The Coupled Model Intercomparison Project (CMIP), Bulletin of the American Meteorological Society, 81(2). 313-318. https://doi.org/10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2
  30. Morgenstern, O., Braesicke, P., O'Connor, F.M. et al., 2009, Evaluation of the new UKCA climate-composition model-Part 1: The stratosphere, Geoscientific Model Development, 2, 43-57. https://doi.org/10.5194/gmd-2-43-2009
  31. Masson-Delmotte, V.P., Zhai, A., Pirani, S.L. et al., 2021, IPCC: Climate Change 2021: The Physical Science Basis, Cambridge University Press, UK, 3949 p.
  32. Mogensen, K.S., Balmaseda, M.A., Weaver, A. et al., 2009, NEMOVAR: A variational data assimilation system for the NEMO ocean model, ECMWF newsletter, summer 2009.
  33. Oliver, H.J., Shin, M., Fitzpatrick, B. et al., Cylc-a workflow engine, available at: http://cylc.github.io/cylc/ (last access: 2 October 2023).
  34. Rew, R. and Davis, G., 1990, NetCDF: an interface for scientific data access, IEEE Computer Graphics and Applications, 10, 76-82. https://doi.org/10.1109/38.56302
  35. Sellar, A.A., Jones, C.G., Mulcahy, J.P. et al., 2019, UKESM1: Description and evaluation of the U.K. Earth system model, Journal of Advances in Modeling Earth Systems, 11, 4513-4558. https://doi.org/10.1029/2019MS001739
  36. Scaife A., Arribas, A., Blockley, E. et al., 2014. Skillful Long Range Prediction of European and North American Winters, Geophysical Research Letter, 41, 2514-2519. https://doi.org/10.1002/2014GL059637
  37. Shin, M., Fitzpatrick, B., Clark, A. et al., Rose: a framework for managing and running meteorological suites, available at: http://metomi.github.io/rose/doc/rose.html/ (last access: 2 October 2023).
  38. Shin, M., Fitzpatrick, B., Matthews, D. et al., FCM: Flexible Configuration Management, available at: http://metomi.github.io/fcm/doc/ (last access: 2 October 2023).
  39. Song, H.G., Youn, D., 2020, Comparisons of 1-HourAveraged Surface Temperatures from High-Resolution Reanalysis Data and Surface Observations, Journal of the Korean Earth Science Society, 41(2), 95-110. https://doi.org/10.5467/JKESS.2020.41.2.95
  40. Storkey, D., Blaker, A.T., Mathiot, P. et al., 2018, UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions, Geoscientific Model Development, 11, 3187-3213. https://doi.org/10.5194/gmd-11-3187-2018
  41. Thakur, R., Rabenseifner, R., and Gropp, W., 2005, Optimization of Collective Communication Operations in MPICH, The International Journal of High Performance Computing Applications, 19, 49-66. https://doi.org/10.1177/1094342005051521
  42. Tipka, A., Haimberger, L., Seibert, P., 2020, Flex_extract v7.1.2 - a software package to retrieve and prepare ECMWF data for use in FLEXPART, Geoscientific Model Development, 13, 5277-5310. https://doi.org/10.5194/gmd-13-5277-2020
  43. Telford, P.J., Abraham, N.L., Archibald, A.T. et al., 2013, Implementation of the Fast-JX Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistryclimate model (v7.3), Geoscientific Model Development, 6(1), 161-177. https://doi.org/10.5194/gmd-6-161-2013
  44. Walters, D.N., Best, M.J., Bushell, A.C. et al., 2011, The Met Office Unified Model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations, Geoscientific Model Development, 4, 919-941. https://doi.org/10.5194/gmd-4-919-2011
  45. Williams, K.D., Copsey, D., Blockley, E.W. et al., 2017, The Met office global coupled model 3.0 and 3.1 (GC3.0 and GC3.1) configurations, Journal of Advances in Modeling Earth Systems, 10, 357-380. https://doi.org/10.1002/2017MS001115
  46. Williams, K.D., Harris, C.M., Bodas-Salcedo, A. et al., 2015, The Met Office Global Coupled model 2.0 (GC2) configuration, Geoscientific Model Development, 8, 521-565. https://doi.org/10.5194/gmd-8-1509-2015
  47. Wu, C.H., Freychet, N., Chen, C.A. et al., 2017, East Asian presummer precipitation in the CMIP5 at high versus low horizontal resolution, International Journal of Climatology, 37(11), 4158-4170. https://doi.org/10.1002/joc.5055
  48. Youn, D., Song, H.G., Lee, J., 2022a, Changes in Meteorological Variables by SO2 Emissions over East Asia using a Linux-based U.K. Earth System Model, Journal of Korean Earth Science Society, 43(1), 60-76. https://doi.org/10.5467/JKESS.2022.43.1.60
  49. Youn, D., Song, H.G., Park, S., 2022b, An Installation and Model Assessment of the UM, U.K. Earth System Model, in a Linux Cluster, Journal of Korean Earth Science Society, 43(6), 691-711. https://doi.org/10.5467/JKESS.2022.43.6.691
  50. Youn, D., Park, R., Jeong, J. et al., 2011, Impacts of aerosols on regional meteorology due to Siberian forest fires in May 2003, Atmospheric Environment, 45(7), 1407-1412. https://doi.org/10.1016/j.atmosenv.2010.12.028