DOI QR코드

DOI QR Code

Time-varying characteristics analysis of vehicle-bridge interaction system using an accurate time-frequency method

  • Tian-Li Huang (School of Civil Engineering, Central South University) ;
  • Lei Tang (School of Civil Engineering, Central South University) ;
  • Chen-Lu Zhan (School of Civil Engineering, Central South University) ;
  • Xu-Qiang Shang (School of Civil Engineering, Central South University) ;
  • Ning-Bo Wang (School of Civil Engineering, Central South University) ;
  • Wei-Xin Ren (College of Civil and Transportation Engineering, Shenzhen University)
  • Received : 2023.07.10
  • Accepted : 2024.01.10
  • Published : 2024.02.25

Abstract

The evaluation of dynamic characteristics of bridges under operational traffic loads is a crucial aspect of bridge structural health monitoring. In the vehicle-bridge interaction (VBI) system, the vibration responses of bridge exhibit time-varying characteristics. To address this issue, an accurate time-frequency analysis method that combines the autoregressive power spectrum based empirical wavelet transform (AR-EWT) and local maximum synchrosqueezing transform (LMSST) is proposed to identify the time-varying instantaneous frequencies (IFs) of the bridge in the VBI system. The AR-EWT method decomposes the vibration response of the bridge into mono-component signals. Then, LMSST is employed to identify the IFs of each mono-component signal. The AR-EWT combined with the LMSST method (AR-EWT+LMSST) can resolve the problem that LMSST cannot effectively identify the multi-component signals with weak amplitude components. The proposed AR-EWT+LMSST method is compared with some advanced time-frequency analysis techniques such as synchrosqueezing transform (SST), synchroextracting transform (SET), and LMSST. The results demonstrate that the proposed AR-EWT+LMSST method can improve the accuracy of identified IFs. The effectiveness and applicability of the proposed method are validated through a multi-component signal, a VBI numerical model with a four-degree-of-freedom half-car, and a VBI model experiment. The effect of vehicle characteristics, vehicle speed, and road surface roughness on the identified IFs of bridge are investigated.

Keywords

Acknowledgement

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 52078486 and 52278233), the National Key Research and Development Program of China (Grant No. 2021YFE0105600), the Key Project for Scientific and Technological Cooperation Scheme of Jiangxi Province (Grant Nos. 20212BDH80022 and 20223BBH80002).

References

  1. Bettinelli, L., Thannen, B., Stollwitzer, A. and Fink, J. (2022), "Comparison of different approaches for considering vehicle-bridge-interaction in dynamic calculations of high-speed railway bridges", Eng. Struct., 270, 114897. https://doi.org/10.1016/j.engstruct.2022.114897
  2. Cantero, D., Hester, D. and Brownjohn, J. (2017), "Evolution of bridge frequencies and modes of vibration during truck passage", Eng. Struct., 152, 452-464. https://doi.org/10.1016/j.engstruct.2017.09.039
  3. Daubechies, I., Liu, J. and Wu, H.T. (2011), "Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool", Appl. Comput. Harmon. Anal., 30(2), 243-261. https://doi.org/10.1016/j.acha.2010.08.002
  4. Di Matteo, A., Fiandaca, D. and Pirrotta, A. (2022), "Smartphone-based bridge monitoring through vehicle-bridge interaction: analysis and experimental assessment", J. Civil Struct. Health Monitor., 12(6), 1329-1342. https://doi.org/10.1007/s13349-022-00593-1
  5. Feldman, M. (2014), "Hilbert transform methods for nonparametric identification of nonlinear time varying vibration systems", Mech. Syst. Signal Proc., 47(1-2), 66-77. https://doi.org/10.1016/j.ymssp.2012.09.003
  6. Gilles, J. (2013), "Empirical wavelet transform", IEEE Trans. Signal Process., 61(16), 3999-4010. https://doi.org/10.1109/TSP.2013.2265222
  7. Glatz, B. and Fink, J. (2021), "A redesigned approach to the additional damping method in the dynamic analysis of simply supported railway bridges", Eng. Struct., 241, 112415. https://doi.org/10.1016/j.engstruct.2021.112415
  8. Gonzalez, A., Covian, E. and Casero, M. (2023), "Verifying the suitability of uncoupled numerical methods for solving vehicle-bridge interaction problems", Struct. Infrastruct. Eng., 19(10), 1407-1424. https://doi.org/10.1080/15732479.2022.2033276
  9. Jin, N., Dertimanis, V.K., Chatzi, E.N., Dimitrakopoulos, E.G. and Katafygiotis, L.S. (2022), "Subspace identification of bridge dynamics via traversing vehicle measurements", J. Sound Vib., 523, 116690. https://doi.org/10.1016/j.jsv.2021.116690
  10. Kalra, M., Kumar, S. and Das, B. (2020), "Seismic signal analysis using empirical wavelet transform for moving ground target detection and classification", IEEE Sens. J., 20(14), 7886-7895. https://doi.org/10.1109/JSEN.2020.2980857
  11. Kim, C.Y., Jung, D.S., Kim, N.S., Kwon, S.D. and Feng, M.Q. (2003), "Effect of Vehicle mass on natural frequencies of bridges measured from traffic-induced vibration", Earthq. Eng. Eng. Vib., 2, 109-115. https://doi.org/10.1007/BF02857543
  12. Kong, X., Cai, C.S. and Kong, B. (2016), "Numerically extracting bridge modal properties from dynamic responses of moving vehicles", J. Eng. Mech., 142(6), 04016025. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001033
  13. Kumar, R., Singh, V. and Ismail, M. (2023), "Post-Earthquake Damage Identification of Buildings with LMSST", Buildings, 13(7), 1614. https://doi.org/10.3390/buildings13071614
  14. Li, J.T., Zhu, X.Q., Law, S.S. and Samali, B. (2020), "Time-varying characteristics of bridges under the passage of vehicles using synchroextracting transform", Mech. Syst. Signal Proc., 140, 106727. https://doi.org/10.1016/j.ymssp.2020.106727
  15. Li, J.T., Guo, J. and Zhu, X.Q. (2021), "Time-varying parameter identification of bridges subject to moving vehicles using ridge extraction based on empirical wavelet transform", Int. J. Struct. Stab. Dyn., 21(4), 2150046. https://doi.org/10.1142/S0219455421500462
  16. Li, Y.L., He, W.Y., Ren, W.X., Chen, Z.W. and Li, J.F. (2022), "Modal identification of time-varying vehicle-bridge system using a single sensor", Smart. Struct. Syst., Int. J., 30(1), 107-119. https://doi.org/10.12989/sss.2022.30.1.107
  17. Liu, J.L., Wang, Z.C., Ren, W.X. and Li, X.X. (2015), "Structural time-varying damage detection using synchrosqueezing wavelet transform", Smart. Struct. Syst., Int. J., 15(1), 119-133. https://doi.org/10.12989/sss.2015.15.1.119
  18. Luo, Z.J., Liu, T., Yan, S.Z. and Qian, M.B. (2018), "Revised empirical wavelet transform based on auto-regressive power spectrum and its application to the mode decomposition of deployable structure", J. Sound Vib., 431, 70-87. https://doi.org/10.1016/j.jsv.2018.06.001
  19. Mahdavi, A., Kahoo, A.R., Radad, M. and Monfared, M.S. (2021), "Application of the local maximum synchrosqueezing transform for seismic data", Digit. Signal Prog., 110, 102934. https://doi.org/10.1016/j.dsp.2020.102934
  20. Matsuoka, K., Kaito, K. and Sogabe, M. (2020), "Bayesian time-frequency analysis of the vehicle-bridge dynamic interaction effect on simple-supported resonant railway bridges", Mech. Syst. Signal Proc., 135, 106373. https://doi.org/10.1016/j.ymssp.2019.106373
  21. Merainani, B., Rahmoune, C., Benazzouz, D. and Ould Bouamama, B. (2017), "A novel gearbox fault feature extraction and classification using Hilbert empirical wavelet transform, singular value decomposition, and SOM neural network", J. Vib. Control, 24(12), 2512-2531. https://doi.org/10.1177/1077546316688991
  22. Mostafa, N., Di Maio, D., Loendersloot, R. and Tinga, T. (2021), "Extracting the time-dependent resonances of a vehicle-bridge interacting system by wavelet synchrosqueezed transform", Struct. Control. Health Monitor., 28(12), e2833. https://doi.org/10.1002/stc.2833
  23. Nagarajaiah, S. and Varadarajan, N. (2005), "Short time Fourier transform algorithm for wind response control of buildings with variable stiffness TMD", Eng. Struct., 27(3), 431-441. https://doi.org/10.1016/j.engstruct.2004.10.015
  24. Oberlin, T., Meignen, S. and Perrier, V. (2015), "Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations", IEEE Trans. Signal Process., 63(5), 1335-1344. https://doi.org/10.1109/TSP.2015.2391077
  25. Stancioiu, D. and Ouyang, H. (2016), "Optimal vibration control of beams subjected to a mass moving at constant speed", J. Vib. Control, 22(14), 3202-3217. https://doi.org/10.1177/1077546314561814
  26. Stoura, C.D. and Dimitrakopoulos, E.G. (2020), "Additional damping effect on bridges because of vehicle-bridge interaction", J. Sound Vib., 476, 115294. https://doi.org/10.1016/j.jsv.2020.115294
  27. Stoura, C.D., Paraskevopoulos, E., Dimitrakopoulos, E.G. and Natsiavas, S. (2021), "A Dynamic Partitioning Method to solve the vehicle-bridge interaction problem", Comput. Struct., 251, 106547. https://doi.org/10.1016/j.compstruc.2021.106547
  28. Tan, C.J. and Uddin, N. (2020), "Hilbert transform based approach to improve extraction of "drive-by" bridge frequency", Smart. Struct. Syst., Int. J., 25(3), 265-277. https://doi.org/10.12989/sss.2020.25.3.265
  29. Tan, C.J., Zhao, H., Obrien, E.J., Uddin, N. and Kim, C.W. (2023), "Exploring Time-Varying Characteristics in Drive-By Bridge Frequency Extraction with the Second-Order Synchrosqueezing Transform", J. Bridge Eng., 28(4), 04023010. https://doi.org/10.1061/JBENF2.BEENG-5979
  30. Thakur, G. and Wu, H.T. (2011), "Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples", SIAM J. Math. Anal., 43(5), 2078-2095. https://doi.org/10.1137/100798818
  31. Wan, X., Huang, T.L. and Chen, H.P. (2020), "Improved empirical wavelet transform for modal parameters identification of civil engineering structures under ambient excitations", J. Vib. Eng, 33(2), 219-230. [In Chinese] https://doi.org/10.16385/j.cnki.issn.1004-4523.2020.02.001
  32. Yang, Y. and Nagarajaiah, S. (2014), "Blind identification of damage in time-varying systems using independent component analysis with wavelet transform", Mech. Syst. Signal Proc., 47(1-2), 3-20. https://doi.org/10.1016/j.ymssp.2012.08.029
  33. Yang, Y.B., Cheng, M.C. and Chang, K.C. (2013), "Frequency variation in vehicle-bridge interaction systems", Int. J. Struct. Stab. Dyn., 13(2), 1350019. https://doi.org/10.1142/S0219455413500193
  34. Yu, G., Yu, M.J. and Xu, C.Y. (2017), "Synchroextracting Transform", IEEE Trans. Ind. Electron., 64(10), 8042-8054. https://doi.org/10.1109/TIE.2017.2696503
  35. Yu, G., Wang, Z.H., Zhao, P. and Li, Z. (2019), "Local maximum synchrosqueezing transform: An energy-concentrated timefrequency analysis tool", Mech. Syst. Signal Proc., 117, 537-552. https://doi.org/10.1016/j.ymssp.2018.08.006
  36. Zhu, X.Q. and Law, S.S. (2003), "Identification of moving interaction forces with incomplete velocity information", Mech. Syst. Signal Proc., 17(6), 1349-1366. https://doi.org/10.1006/mssp.2002.1577