과제정보
This research is supported by the National Natural Science Foundation of China (No. U23A20618, No. 52075273) and Ningbo Science and Technology Innovation 2025 Major Project (No.2020Z070).
참고문헌
- Al Janaideh, M., Rakotondrabe, M. and Aljanaideh, O. (2016), "Further results on hysteresis compensation of smart micropositioning systems with the inverse Prandtl-Ishlinskii compensator", IEEE Transact. Control Syst. Technol., 24(2), 428-439. https://doi.org/10.1109/TCST.2015.2446959
- Ali, H.I., Noor, S.B.M. and Marhaban, M.H. (2010), "PSO-based robust H-infinity controller design using cascade compensation network", IEICE Electron. Expr., 7(12), 832-838. https://doi.org/10.1587/elex.7.832
- Ali, A., Pasha, R.A., Elahi, H., Sheeraz, M.A., Bibi, S., Hassan, Z.U., Eugeni, M. and Gaudenzi, P. (2019), "Investigation of deformation in bimorph piezoelectric actuator: analytical, numerical and experimental approach", Integr. Ferroelectr., 201(1), 94-109. https://doi.org/10.1080/10584587.2019.1668694
- Aziz, N.A.A., Ibrahim, Z., Mubin, M., Nawawi, S.W. and Mohamad, M.S. (2018), "Improving particle swarm optimization via adaptive switching asynchronous-synchronous update", Appl. Soft Comput., 72, 298-311. https://doi.org/10.1016/j.asoc.2018.07.047
- Baziyad, A.G., Ahmad, I., Salamah, Y.B. and Alkuhayli, A. (2022), "Robust tracking control of piezo-actuated nanopositioning stage using improved inverse LSSVM hysteresis model and RST controller", Actuators, 11(11), 324. https://doi.org/10.3390/act11110324
- Das, S. and Dhang, N. (2020), "Structural damage identification of truss structures using self-controlled multi-stage particle swarm optimization", Smart Struct. Syst., Int. J., 25(3), 345-368. https://doi.org/10.12989/sss.2020.25.3.345
- Feng, Y. and Li, Y. (2021), "System identification of micro piezoelectric actuators via rate-dependent prandtl-ishlinskii hysteresis model based on a modified PSO algorithm", IEEE Transact. Nanotechnol., 20, 205-214. https://doi.org/10.1109/TNANO.2020.3034965
- Fung, R.F., Han, C.F. and Chang, J.R. (2008), "Dynamic modeling of a high-precision self-moving stage with various frictional models", Appl. Math. Model., 32(9), 1769-1780. https://doi.org/10.1016/j.apm.2007.06.012
- Gan, J. and Zhang, X. (2019), "Nonlinear hysteresis modeling of piezoelectric actuators using a generalized Bouc-Wen model", Micromachines-basel., 10, 183. https://doi.org/10.3390/mi10030183
- Gan, J., Mei, Z., Chen, X., Zhou, Y. and Ge, M.F. (2019), "A modified Duhem model for rate-dependent hysteresis behaviors", Micromachines-basel, 10(10), 680. https://doi.org/10.3390/mi10100680
- Guo, P., Guan, X. and Ou, J. (2014), "Physical modeling and design method of the hysteretic behavior of magnetorheological dampers", J. Intel. Mat. Syst. Struct., 25(6), 680-696. https://doi.org/10.1177/1045389X13500576
- Huang, H.W., Liu, T.T. and Sun, L.M. (2019), "Multi-mode cable vibration control using MR damper based on nonlinear modeling", Smart Struct. Syst., Int. J., 23(6), 565-577. https://doi.org/10.12989/sss.2019.23.6.565
- Ionescu, F., Konstadinov, K., Arghir, S. and Arotaritei, D. (2011), "Hybrid micro-nano robot for cell and cristal manipulations", J. Control Eng. Appl. Inform., 13(2), 56-63. https://doi.org/2011-06-18
- Ji, H., Lv, B., Ding, H., Yang, F., Qi, A., Wu, X. and Ni, J. (2022), "Modeling and control of hysteresis characteristics of piezoelectric micro-positioning platform based on Duhem Model", Actuators, 11(5), 122. https://doi.org/10.3390/act11050122
- Jung, J. and Huh, K. (2010), "Simulation tool design for the two-axis nano stage of lithography systems", Mechatronics, 20(5), 574-581. https://doi.org/10.1016/j.mechatronics.2010.06.003
- Kenton, B.J., Fleming, A.J. and Leang, K.K. (2011), "Compact ultra-fast vertical nanopositioner for improving scanning probe microscope scan speed", Rev. Sci. Instrum., 82(12), 123703. https://doi.org/10.1063/1.3664613
- Kim, K., Nilsen, E., Huang, T., Kim, A., Ellis, M., Skidmore, G. and Lee, J.B. (2004), "Metallic microgripper with SU-8 adaptor as end-effectors for heterogeneous micro/nano assembly applications", Microsyst. Technol., 10(10), 689-693. https://doi.org/10.1007/s00542-004-0367-6
- Li, Y., Zhu, J., Li, Y. and Zhu, L. (2022), "A hybrid Jiles-Atherton and Preisach model of dynamic magnetic hysteresis based on backpropagation neural networks", J. Magn. Magn. Mater., 544, 168655. https://doi.org/10.1016/j.jmmm.2021.168655
- Liu, C.H., Jywe, W.Y., Jeng, Y.R., Hsu, T.H. and Li, Y.T. (2010), "Design and control of a long-traveling nano-positioning stage", Precis. Eng., 34(3), 497-506. https://doi.org/10.1016/j.precisioneng.2010.01.003
- Liu, Y., Du, D., Qi, N. and Zhao, J. (2019), "A distributed parameter Maxwell-slip model for the hysteresis in piezoelectric actuators", IEEE Transact. Indust. Electron., 66, 7150-7158. http://doi.org/10.1002/abio.370040210
- Liu, Y.F., Wang, Y. and Chen, X. (2020), "Online hysteresis identification and compensation for piezoelectric actuators", IEEE Transact. Indust. Electron., 67(7), 5595-5603. https://doi.org/10.1109/TIE.2019.2934022
- Liu, Y., Ni, C., Du, D. and Qi, N. (2021), "Learning piezoelectric actuator dynamics using a hybrid model based on Maxwell-Slip and Gaussian processes", IEEE-ASME Transact. Mechatron., 27(2), 725-732. https://doi.org/10.1109/TMECH.2021.3070187
- Luo, Y., Qu, Y., Zhang, Y., Xu, M., Xie, S. and Zhang, X. (2019), "Hysteretic modeling and simulation of a bilateral piezoelectric stack actuator based on Preisach model", Int. J. Appl. Electrom., 59, 271-280. http://doi.org/10.3233/JAE-171251
- Mittal, S. and Meng, C.H. (2000), "Hysteresis compensation in electromagnetic actuators through Preisach model inversion", IEEE-ASME Transact. Mechatron., 5(4), 394-409. https://doi.org/10.1109/3516.891051
- Muftah, M.N., Faudzi, A.A.M., Sahlan, S. and Shouran, M. (2022), "Modeling and fuzzy fopid controller tuned by PSO for pneumatic positioning system", Energies, 15(10), 3757. https://doi.org/10.3390/en15103757
- Nguyen, P.B., Choi, S.B. and Song, B.K. (2018), "A new approach to hysteresis modelling for a piezoelectric actuator using Preisach model and recursive method with an application to open-loop position tracking control", Sensor Actuat. A-Phys., 270, 136-152. https://doi.org/10.1016/j.sna.2017.12.034
- Nguyen-Ngoc, L., Tran, N.H., Bui-Tien, T., Mai-Duc, A., Abdel Wahab, M., X Nguyen, H. and De Roeck, G. (2021), "Damage detection in structures using particle swarm optimization combined with artificial neural network", Smart Struct. Syst., Int. J., 28(1), 1-12. https://doi.org/10.12989/sss.2021.28.1.001
- Pasco, Y. and Berry, A. (2004), "A hybrid analytical/numerical model of piezoelectric stack actuators using a macroscopic nonlinear theory of ferroelectricity and a preisach model of hysteresis", J. Intel. Mat. Syst. Struct., 15(5), 375-386. https://doi.org/10.1177/1045389X04040907
- Qian, C., Ouyang, Q., Song, Y. and Zhao, W. (2020), "Hysteresis modeling of piezoelectric actuators with the frequency-dependeng behavior using a hybrid model", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 234(9), 1848-1858. https://doi.org/10.1177/0954406219897089
- Rakotondrabe, M. (2017), "Multivariable classical Prandtl-Ishlinskii hysteresis modeling and compensation and sensorless control of a nonlinear 2-dof piezoactuator", Nonlinear Dyn., 89(1), 481-499. https://doi.org/10.1007/s11071-017-3466-5
- Savoie, M. and Shan, J.J. (2022), "Temperature-dependent asymmetric Prandtl-Ishlinskii hysteresis model for piezoelectric actuators", Smart Mater. Struct., 31(5), 055022. https://doi.org/10.1088/1361-665X/ac6552
- Schweizer, B. (2017), "Hysteresis in porous media: Modelling and analysis", Interface Free Bound., 9(3), 417-447. https://doi.org/ 10.4171/IFB/388
- Sente, P.A., Labrique, F.M. and Alexandre, P.J. (2011), "Efficient control of a piezoelectric linear actuator embedded into a servo-valve for aeronautic applications", IEEE Transact. Indust. Electron., 59(4), 1971-1979. https://doi.org/10.1109/TIE.2011.2165450
- Sherrit, S., Bao, X., Jones, C.M., Aldrich, J.B., Blodget, C.J., Moore, J.D., Carson, J.W. and Goullioud, R. (2011), "Piezoelectric multilayer actuator life test", IEEE Transact. Ultrason. Ferroelect. Freq. Control, 58(4), 820-828. https://doi.org/10.1109/TUFFC.2011.1874
- Shome, S.K., Mukherjee, A., Karmakar, P. and Datta, U. (2018), "Adaptive feed-forward controller of piezoelectric actuator for micro/nano-positioning", Sadhana., 43(10), 158. https://10.1007/s12046-018-0925-8
- Tang, H., Zhang, W., Xie, L. and Xue, S. (2013), "Multi-stage approach for structural damage identification using Particle Swarm Optimization", Smart Struct. Syst., Int. J., 11(1), 69-86. https://doi.org/10.12989/sss.2013.11.1.069
- Tao, G. and Kokotovic, P.V. (1995), "Adaptive control of plants with unknown hystereses", IEEE Transact. Automat. Control, 40(2), 200-212. https://doi.org/10.1109/9.341778
- Tue, P.T., Shimura, R., Shimoda, T. and Takamura, Y. (2019), "Direct integration of piezoactuators array with active-matrix oxide thin-flim transistors using a low-temperature solution process", Sensor Actuat. A-Phys., 295(15), 125-132. https://doi.org/10.1016/j.sna.2019.04.040
- Vorbringer-Dorozhovets, N., Hausotte, T., Manske, E., Shen, J.C. and Jager, G. (2011), "Novel control scheme for a high-speed metrological scanning probe microscope", Meas. Sci. Technol., 22(9), 094012. https://doi.org/10.1088/0957-0233/22/9/094012
- Wang, D. and Zhu, W. (2011), "A phenomenological model for pre-stressed piezoelectric ceramic stack actuators", Smart Mater. Struct., 20, 035018. https://doi.org/10.1088/0964-1726/2/3/035018
- Xiao, S. and Li, Y. (2012), "Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model", IEEE Transact. Control Syst. Technol., 21, 1549-1557. https://doi.org/10.1109/TCST.2012.2206029
- Xu, Q. and Li, Y. (2010), "Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation", J. Dyn. Syst.-t ASME, 132(4). https://doi.org/10.1115/1.4001712
- Yu, Y., Li, Y.C. and Li, J.C. (2015), "Parameter identification of a novel strain stiffening model for magnetorheological elastomer base isolator utilizing enhanced particle swarm optimization", J. Intel. Mat. Syst. Struct., 26(18), 2446-2462. https://doi.org/10.1177/1045389X14556166
- Zhang, M. and Damjanovic, D. (2020), "A quasi-Rayleigh model for modeling hysteresis of piezoelectric actuators", Smart Mater. Struct., 29(7), 075012. https://doi.org/10.1088/1361-665X/ab874b
- Zhang, Q., Dong, Y., Peng, Y., Luo, J., Xie, S. and Pu, H. (2019), "Asymmetric Bouc-Wen hysteresis modeling and inverse compensation for piezoelectric actuator via a genetic algorithm-based particle swarm optimization identification algorithm", J. Intell. Mater. Syst. Struct., 30, 1263-1275. https://doi.org/10.1177/1045389X19831360