DOI QR코드

DOI QR Code

STRESS-ENERGY TENSOR OF THE TRACELESS RICCI TENSOR AND EINSTEIN-TYPE MANIFOLDS

  • Gabjin Yun (Department of Mathematics College of Natural Science Myongji University)
  • 투고 : 2023.02.14
  • 심사 : 2023.12.05
  • 발행 : 2024.03.01

초록

In this paper, we introduce the notion of stress-energy tensor Q of the traceless Ricci tensor for Riemannian manifolds (Mn, g), and investigate harmonicity of Riemannian curvature tensor and Weyl curvature tensor when (M, g) satisfies some geometric structure such as critical point equation or vacuum static equation for smooth functions.

키워드

과제정보

The author would like to thank the anonymous referees for pointing out several useful comments.

참고문헌

  1. P. Baird and J. Eells, A conservation law for harmonic maps, in Geometry Symposium, Utrecht 1980 (Utrecht, 1980), 1-25, Lecture Notes in Math., 894, Springer, Berlin, 1981.
  2. A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer, Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8
  3. H.-D. Cao and Q. Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J. 162 (2013), no. 6, 1149-1169. https://doi.org/10.1215/00127094-2147649
  4. S. Hwang and G. Yun, Vacuum static spaces with vanishing of complete divergence of Weyl tensor, J. Geom. Anal. 31 (2021), no. 3, 3060-3084. https://doi.org/10.1007/s12220-020-00384-4
  5. S. Hwang and G. Yun, Besse conjecture with positive isotropic curvature, Ann. Global Anal. Geom. 62 (2022), no. 3, 507-532. https://doi.org/10.1007/s10455-022-09863-z
  6. B. Leandro, Vanishing conditions on Weyl tensor for Einstein-type manifolds, Pacific J. Math. 314 (2021), no. 1, 99-113. https://doi.org/10.2140/pjm.2021.314.99
  7. M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333-340. https://doi.org/10.2969/jmsj/01430333
  8. J. Qing and W. Yuan, A note on static spaces and related problems, J. Geom. Phys. 74 (2013), 18-27. https://doi.org/10.1016/j.geomphys.2013.07.003
  9. Y. L. Xin, Differential forms, conservation law and monotonicity formula, Sci. Sinica Ser. A 29 (1986), no. 1, 40-50.
  10. G. Yun, J. Chang, and S. Hwang, Total scalar curvature and harmonic curvature, Taiwanese J. Math. 18 (2014), no. 5, 1439-1458. https://doi.org/10.11650/tjm.18.2014.1489
  11. G. Yun, J. Chang, and S. Hwang, Erratum to: Total scalar curvature and harmonic curvature, Taiwanese J. Math. 20 (2016), no. 3, 699-703. https://doi.org/10.11650/tjm.20.2016.7565
  12. G. Yun and S. Hwang, On the geometry of Einstein-type manifolds with some structural conditions, J. Math. Anal. Appl. 516 (2022), no. 2, Paper No. 126527, 24 pp. https://doi.org/10.1016/j.jmaa.2022.126527