References
- F. Alvares and H. Attouch, An inertial proximal monotone operators via discretization of a nonlinear oscillator with damping, Set Valued Anal., 9 (2001), 3-11. https://doi.org/10.1023/A:1011253113155
- P.N. Anh, Strong convergence theorems for nonexpansive mappings Ky Fan inequalities, J. Optim. Theory Appl., 154 (2012), 303-320. https://doi.org/10.1007/s10957-012-0005-x
- H. Attouch, X. Goudon and P. Redont, The heavy ball with friction. I. The continuous dynamical system, Commun. Contemp. Math., 21(2) (2000), 1-34. https://doi.org/10.1142/S0219199700000025
- H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, Springer, New York, 2011.
- R.E. Bruck, On the convex approximation property and the asymptotic behavior of Nonlinear contractions in Banach spaces, Israel J. Math., 38 (1981), 304-314. https://doi.org/10.1007/BF02762776
- C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759-775.
- Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365. https://doi.org/10.1088/0031-9155/51/10/001
- Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 2353-2365. https://doi.org/10.1007/BF02142692
- Y. Censor, A. Gibali and S. Reich, The split variational inequality problem, (2010), https://arxiv.org/pdf/1009.3780v1.
- Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301-323. https://doi.org/10.1007/s11075-011-9490-5
- C.E. Chidume and M.O. Nnakwe, Iterative algorithms for split variational inequalities and generalized split feasibility problems with applications, J. Nonlinear Var. Anal., 3 (2019), 127-140. https://doi.org/10.23952/jnva.3.2019.2.02
- P.L. Combettes, and V. R Wajs, Signal recovery by proximal forwardbackward splitting, Multiscale Model. Simul., 4 (2005), 1168-1200. https://doi.org/10.1137/050626090
- J. Douglas and H.H. Rachford, On the numerical solution of the heat conduction problem in two and three space variables, Trans. Amer. Math. Soc., 82 (1956), 421-439. https://doi.org/10.1090/S0002-9947-1956-0084194-4
- G. Ficher, Sul pproblem elastostatico di signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 34 (1963), 138-142.
- G. Ficher, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincci, Cl. Sci. Fis. Mat. Nat., Sez., 7 (1964), 91-140.
- J.L. Guan, L.C. Ceng and B. Hu, Strong convergence theorem for split monotone variational inclusion with constraints of variational inequalities and fixed point problems, Cl. J. Inequal. Appl., (2018), https://doi.org/10.1186/s13660-018-1905-6.
- A.N. Iusem and M. Nasri, Korpelevichs method for variational inequality problems in Banach spaces, J. Glob. Optim., 50(1) (2011), 59-76. https://doi.org/10.1007/s10898-010-9613-x
- C. Izuchukwu, C.C. Okeke and F.O. Isiogugu, A viscosity iterative technique for split variational inclusion and fixed point problems between a Hilbert space and a Banach space, J. Fixed Point Theory Appl., 20 (2018), 1-25. https://doi.org/10.1007/s11784-018-0489-6
- C. Izuchukwu, S. Reich and Y. Shehu, Relaxed inertial methods for solving the split monotone variational inclusion problem beyond co-coerciveness, Optimization, 72(2) (2021), 607-646. https://doi.org/10.1080/02331934.2021.1981895
- K. Kazmi and S. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optim. Lett., 8 (2013), 1-15.
- B. Lemaire, Which fixed point does the iteration method select?, Recent Advances in optimization, Springer, Berlin, Germany, 452 (1997), 154-157. https://doi.org/10.1007/978-3-642-59073-3_11
- A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275-283. https://doi.org/10.1007/s10957-011-9814-6
- G.N. Ogwo, C. Izuchukwu and O.T. Mewomo, Inertial methods for finding minimumnorm solutions of the split variational inequality problem beyond monotonicity, Numer. Algo., 88 (2021), 1419-1456. https://doi.org/10.1007/s11075-021-01081-1
- B.T. Polyak, Some methods of speeding up the convergence of iteration methods, Politehn Univ Buchar Sci Bull Ser A Appl Math Phys., 4(5) (1964), 1-17. https://doi.org/10.1016/0041-5553(64)90137-5
- S. Reich, D.V. Thong, P. Cholamjiak and Van Long, Inertial projection-type methods for solving pseudomonotone variational inequality problems in Hilbert space, Numer. Algo., 88(2) (2021), 813-835. https://doi.org/10.1007/s11075-020-01058-6
- S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal., 75 (2012), 742-750. https://doi.org/10.1016/j.na.2011.09.005
- Y. Shehu and P. Cholamjiak, Iterative method with inertial for variational inequalities in Hilbert spaces, Calcolo, 56 (2019), https://doi.org/10.1007/s10092-018-0300-5.
- R. Suparatulatorn, P. Charoensawan and K. Poochinapan, Inertial self-adaptive algorithm for solving split feasible problems with applications to image restoration, Math. Meth. Appl. Sci., 42 (2019), 7268-7284. https://doi.org/10.1002/mma.5836
- W. Takahashi, The split common fixed point problem and the shrinking projection method in Banach spaces, J. Conv. Anal., 24 (2017), 1015-1028.
- W. Takahashi, C.F. Wen and J.C. Yao, The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Fixed Point Theory, 19 (2018), 407-419. https://doi.org/10.24193/fpt-ro.2018.1.32
- D.V. Thong and D.V. Hieu, Weak and strong convergence theorems for variational inequality problems, Numer. Algo., (2017), DOI 10.1007/s11075-017-0412-z.
- D.V. Thong, Y. Shehu and O.S. Iyiola, Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings, Numer Algo., 84 (2020), 795-823.
- M. Tian and B.N. Jiang, Viscosity approximation methods for a class of generalized split feasibility problems with variational inequalities in Hilbert space, Numer. Funct. Anal. Optim., 40(8) (2019), 902-923. https://doi.org/10.1080/01630563.2018.1564763
- P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431-446. https://doi.org/10.1137/S0363012998338806
- G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Math. Acad. Sci., 258 (1964), 4413-4416.
- Y. Yao, Y. Shehu, X.H. Li and Q.L. Dong, A method with inertial extrapolation step for split monotone inclusion problems, Optimization, (2020), https://doi.org/10.1080/02331934.2020.1857754.
- T. Zhao, D. Wang, L. Ceng, L. He, C. Wang and H. Fan, Quasi-inertial Tseng extragradient algorithm for pseudomonotone variational inequalities and fixed point problems of quasi-nonexpansive operators, Numer. Funct. Anal. Optim., 42(1) (2021), 69-90. https://doi.org/10.1080/01630563.2020.1867866