DOI QR코드

DOI QR Code

A NEW RELAXED TSENG METHOD FOR FINDING A COMMON SOLUTION OF FIXED POINT AND SPLIT MONOTONE INCLUSION PROBLEMS

  • Lusanda Mzimela (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal) ;
  • Akindele Adebayo Mebawondu (Department of Computer Science and Mathematics, Mountain Top University, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal) ;
  • Adhir Maharaj (Department of Mathematics, Durban University of Technology) ;
  • Chinedu Izuchukwu (School of Mathematics, University of the Witwatersrand) ;
  • Ojen Kumar Narain (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal)
  • Received : 2023.08.01
  • Accepted : 2023.09.08
  • Published : 2024.03.15

Abstract

In this paper, we study the problem of finding a common solution to a fixed point problem involving a finite family of ρ-demimetric operators and a split monotone inclusion problem with monotone and Lipschitz continuous operator in real Hilbert spaces. Motivated by the inertial technique and the Tseng method, a new and efficient iterative method for solving the aforementioned problem is introduced and studied. Also, we establish a strong convergence result of the proposed method under standard and mild conditions.

Keywords

References

  1. F. Alvares and H. Attouch, An inertial proximal monotone operators via discretization of a nonlinear oscillator with damping, Set Valued Anal., 9 (2001), 3-11. https://doi.org/10.1023/A:1011253113155
  2. P.N. Anh, Strong convergence theorems for nonexpansive mappings Ky Fan inequalities, J. Optim. Theory Appl., 154 (2012), 303-320. https://doi.org/10.1007/s10957-012-0005-x
  3. H. Attouch, X. Goudon and P. Redont, The heavy ball with friction. I. The continuous dynamical system, Commun. Contemp. Math., 21(2) (2000), 1-34. https://doi.org/10.1142/S0219199700000025
  4. H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, Springer, New York, 2011.
  5. R.E. Bruck, On the convex approximation property and the asymptotic behavior of Nonlinear contractions in Banach spaces, Israel J. Math., 38 (1981), 304-314. https://doi.org/10.1007/BF02762776
  6. C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759-775.
  7. Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365. https://doi.org/10.1088/0031-9155/51/10/001
  8. Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 2353-2365. https://doi.org/10.1007/BF02142692
  9. Y. Censor, A. Gibali and S. Reich, The split variational inequality problem, (2010), https://arxiv.org/pdf/1009.3780v1.
  10. Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301-323. https://doi.org/10.1007/s11075-011-9490-5
  11. C.E. Chidume and M.O. Nnakwe, Iterative algorithms for split variational inequalities and generalized split feasibility problems with applications, J. Nonlinear Var. Anal., 3 (2019), 127-140. https://doi.org/10.23952/jnva.3.2019.2.02
  12. P.L. Combettes, and V. R Wajs, Signal recovery by proximal forwardbackward splitting, Multiscale Model. Simul., 4 (2005), 1168-1200. https://doi.org/10.1137/050626090
  13. J. Douglas and H.H. Rachford, On the numerical solution of the heat conduction problem in two and three space variables, Trans. Amer. Math. Soc., 82 (1956), 421-439. https://doi.org/10.1090/S0002-9947-1956-0084194-4
  14. G. Ficher, Sul pproblem elastostatico di signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 34 (1963), 138-142.
  15. G. Ficher, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincci, Cl. Sci. Fis. Mat. Nat., Sez., 7 (1964), 91-140.
  16. J.L. Guan, L.C. Ceng and B. Hu, Strong convergence theorem for split monotone variational inclusion with constraints of variational inequalities and fixed point problems, Cl. J. Inequal. Appl., (2018), https://doi.org/10.1186/s13660-018-1905-6.
  17. A.N. Iusem and M. Nasri, Korpelevichs method for variational inequality problems in Banach spaces, J. Glob. Optim., 50(1) (2011), 59-76. https://doi.org/10.1007/s10898-010-9613-x
  18. C. Izuchukwu, C.C. Okeke and F.O. Isiogugu, A viscosity iterative technique for split variational inclusion and fixed point problems between a Hilbert space and a Banach space, J. Fixed Point Theory Appl., 20 (2018), 1-25. https://doi.org/10.1007/s11784-018-0489-6
  19. C. Izuchukwu, S. Reich and Y. Shehu, Relaxed inertial methods for solving the split monotone variational inclusion problem beyond co-coerciveness, Optimization, 72(2) (2021), 607-646. https://doi.org/10.1080/02331934.2021.1981895
  20. K. Kazmi and S. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optim. Lett., 8 (2013), 1-15.
  21. B. Lemaire, Which fixed point does the iteration method select?, Recent Advances in optimization, Springer, Berlin, Germany, 452 (1997), 154-157. https://doi.org/10.1007/978-3-642-59073-3_11
  22. A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275-283. https://doi.org/10.1007/s10957-011-9814-6
  23. G.N. Ogwo, C. Izuchukwu and O.T. Mewomo, Inertial methods for finding minimumnorm solutions of the split variational inequality problem beyond monotonicity, Numer. Algo., 88 (2021), 1419-1456. https://doi.org/10.1007/s11075-021-01081-1
  24. B.T. Polyak, Some methods of speeding up the convergence of iteration methods, Politehn Univ Buchar Sci Bull Ser A Appl Math Phys., 4(5) (1964), 1-17. https://doi.org/10.1016/0041-5553(64)90137-5
  25. S. Reich, D.V. Thong, P. Cholamjiak and Van Long, Inertial projection-type methods for solving pseudomonotone variational inequality problems in Hilbert space, Numer. Algo., 88(2) (2021), 813-835. https://doi.org/10.1007/s11075-020-01058-6
  26. S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal., 75 (2012), 742-750. https://doi.org/10.1016/j.na.2011.09.005
  27. Y. Shehu and P. Cholamjiak, Iterative method with inertial for variational inequalities in Hilbert spaces, Calcolo, 56 (2019), https://doi.org/10.1007/s10092-018-0300-5.
  28. R. Suparatulatorn, P. Charoensawan and K. Poochinapan, Inertial self-adaptive algorithm for solving split feasible problems with applications to image restoration, Math. Meth. Appl. Sci., 42 (2019), 7268-7284. https://doi.org/10.1002/mma.5836
  29. W. Takahashi, The split common fixed point problem and the shrinking projection method in Banach spaces, J. Conv. Anal., 24 (2017), 1015-1028.
  30. W. Takahashi, C.F. Wen and J.C. Yao, The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Fixed Point Theory, 19 (2018), 407-419. https://doi.org/10.24193/fpt-ro.2018.1.32
  31. D.V. Thong and D.V. Hieu, Weak and strong convergence theorems for variational inequality problems, Numer. Algo., (2017), DOI 10.1007/s11075-017-0412-z.
  32. D.V. Thong, Y. Shehu and O.S. Iyiola, Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings, Numer Algo., 84 (2020), 795-823.
  33. M. Tian and B.N. Jiang, Viscosity approximation methods for a class of generalized split feasibility problems with variational inequalities in Hilbert space, Numer. Funct. Anal. Optim., 40(8) (2019), 902-923. https://doi.org/10.1080/01630563.2018.1564763
  34. P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431-446. https://doi.org/10.1137/S0363012998338806
  35. G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Math. Acad. Sci., 258 (1964), 4413-4416. 
  36. Y. Yao, Y. Shehu, X.H. Li and Q.L. Dong, A method with inertial extrapolation step for split monotone inclusion problems, Optimization, (2020), https://doi.org/10.1080/02331934.2020.1857754.
  37. T. Zhao, D. Wang, L. Ceng, L. He, C. Wang and H. Fan, Quasi-inertial Tseng extragradient algorithm for pseudomonotone variational inequalities and fixed point problems of quasi-nonexpansive operators, Numer. Funct. Anal. Optim., 42(1) (2021), 69-90.  https://doi.org/10.1080/01630563.2020.1867866