과제정보
This study was supported by Sunchon National University Research Fund in 2023 (Grant number: 2023-0276).
참고문헌
- Oyhantcabal W, Vitale E, Lagarmilla P. Climate change and links to animal diseases and animal production. ConfOIE 2010;2010:179-186.
- Lubroth J. Climate change and animal health risk. In Meybeck A, Lankosi J, Redfern S, Azzu N, Gitz V eds, Building Resilience for Adaptation to Climate Change in the Agriculture Sector. Rome, Italy. 2012, pp 63-70.
- Rocklov J, Dubrow R. Climate change: an enduring challenge for vector-borne disease prevention and control. Nat Immunol 2020;21(5):479-483. https://doi.org/10.1038/s41590-020-0648-y
- Springer A, Glass A, Topp AK, Strube C. Zoonotic tick-borne pathogens in temperate and cold regions of europe-a review on the prevalence in domestic animals. Front Vet Sci 2020;7:604910. https://doi.org/10.3389/fvets.2020.604910
- Grace D, Bett B, Lindahl J, Robinson T. Climate and livestock disease: assessing the vulnerability of agricultural systems to livestock pests under climate change scenarios. CCAFS Work Pap 2015;116:1-29. https://cgspace.cgiar.org/handle/10568/66595 10568/66595
- Belotindos LP, Lazaro JV, Villanueva MA, Mingala CN. Molecular detection and characterization of Theileria species in the philippines. Acta Parasitol 2014;59(3):448-453. https://doi.org/10.2478/s11686-014-0256-9
- Gebrekidan H, Nelson L, Smith G, Gasser RB, Jabbar A. An outbreak of oriental theileriosis in dairy cattle imported to Vietnam from Australia. Parasitology 2017;144(6):738-746. https://doi.org/10.1017/S0031182016002328
- Jirapattharasate C, Adjou Moumouni PF, Cao S, Iguchi A, Liu M, et al. Molecular epidemiology of bovine babesia spp. and Theileria orientalis parasites in beef cattle from northern and northeastern Thailand. Parasitol Int 2016;65(1):62-69. https://doi.org/10.1016/j.parint.2015.10.005
- Park J, Han YJ, Han DG, Chae JB, Chae JS, et al. Genetic characterization of theileria orientalis from cattle in the republic of Korea. Parasitol Res 2017;116(1):449-454. https://doi.org/10.1007/s00436-016-5316-7
- Kwak D, Seo MG. Genetic diversity of bovine hemoprotozoa in South Korea. Pathogens 2020;9(9):1-9. https://doi.org/10.3390/pathogens9090768
- Kamau J, De Vos AJ, Playford M, Salim B, Kinyanjui P, et al. Emergence of new types of Theileria orientalis in australian cattle and possible cause of theileriosis outbreaks. Parasit Vectors 2011;4:22. https://doi.org/10.1186/1756-3305-4-22
- McFadden AMJ, Rawdon TG, Meyer J, Makin J, Morley CM, et al. An outbreak of haemolytic anaemia associated with infection of Theileria orientalis in naive cattle. N Z Vet J 2011;59(2):79-85. https://doi.org/10.1080/00480169.2011.552857
- Oakes VJ, Yabsley MJ, Schwartz D, LeRoith T, Bissett C, et al. Theileria orientalis ikeda genotype in cattle, virginia, USA. Emerg Infect Dis 2019;25(9):1653-1659. https://doi.org/10.3201/eid2509.190088
- Kim S, Yu DH, Chae JB, Choi KS, Kim HC, et al. Pathogenic genotype of major piroplasm surface protein associated with anemia in Theileria orientalis infection in cattle. Acta Vet Scand 2017;59(1):1-5. https://doi.org/10.1186/s13028-017-0318-8
- Watts JG, Playford MC, Hickey KL. Theileria orientalis: a review. N Z Vet J 2016;64(1):3-9. https://doi.org/10.1080/00480169.2015.1064792
- Espiritu HM, Lee HW, Lee SS, Cho YI. A clinical case of bovine anemia due to Theileria orientalis group in a non-grazed dairy cow in the upper part of South Korea. Korean J Vet Res 2021;61(4):33.1-33.5. https://doi.org/10.14405/KJVR.2021.61.E33
- Perera PK, Gasser RB, Firestone SM, Anderson GA, Malmo J, et al. Oriental theileriosis in dairy cows causes a significant milk production loss. Parasit Vectors 2014;7(1):1-8. https://doi.org/10.1186/1756-3305-7-73
- Fukushima Y, Minamino T, Mikurino Y, Honkawa K, Horii Y, et al. Effects of Theileria orientalis infection on health status and productivity of dairy cows reared inside barns. Pathogens 2021;10(6):650. https://doi.org/10.3390/pathogens10060650
- Jeung SJ, Sung JH, Kim BS. Assessment of the impacts of climate change on climatic zones over the Korean Peninsula. Adv Meteorol 2019;2019:5418041. https://doi.org/10.1155/2019/5418041
- IPCC. The regional impacts of climate change: an assessment of vulnerability-a special report of the IPCC Working Group III. Environ Dev Econ 1998;5(3):333-340. https://doi.org/10.1017/s1355770x00220202
- Seo MG, Ouh IO, Kwon OD, Kwak D. Molecular detection of Anaplasma phagocytophilum-like Anaplasma spp. and pathogenic A. phagocytophilum in cattle from South Korea. Mol Phylogenet Evol 2018;126:23-30. https://doi.org/10.1016/j.ympev.2018.04.012
- Seo MG, Kwon OD, Kwak D. Anaplasma bovis infection in a horse: first clinical report and molecular analysis. Vet Microbiol. 2019;233:47-51. https://doi.org/10.1016/j.vetmic.2019.04.024
- Chae JS, Adjemian JZ, Kim HC, Ko S, Klein TA, et al. Predicting the emergence of tick-borne infections based on climatic changes in Korea. Vector Borne Zoonotic Dis 2008;8(2):265-275. https://doi.org/10.1089/vbz.2007.0190
- Espiritu H, Al Faruk MS, Lee G jae, Lopez BI, Lee SS, et al. Assessment of bovine blood sample stability for complete blood count and blood gases and electrolytes analysis during storage. Korean J Vet Serv 2019;42(4):265-274. https://doi.org/10.7853/KJVS.2019.42.4.265
- Choi KS, Yu DH, Chae JS, Park BK, Yoo JG, et al. Seasonal changes in hemograms and Theileria orientalis infection rates among holstein cattle pastured in the mountains in the republic of Korea. Prev Vet Med 2016;127:77-83. https://doi.org/10.1016/j.prevetmed.2016.03.018
- Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Pena A, et al. Driving forces for changes in geographical distribution of ixodes ricinus ticks in Europe. Parasit Vectors 2013;6(1):1-11. https://doi.org/10.1186/1756-3305-6-1
- McFadden AMJ, Gias E, Heuer C, Stevens McFadden FJ, Pulford DJ. Prevalence and spatial distribution of cattle herds infected with Theileria orientalis in new zealand between 2012 and 2013. N Z Vet J 2016;64(1):55-59. https://doi.org/10.1080/00480169.2015.1090891
- Chong ST, Kim HC, Lee IY, Kollars TM, Sancho AR, et al. Seasonal distribution of ticks in four habitats near the demilitarized zone, Gyeonggi-do (Province), Republic of Korea. Korean J Parasitol 2013;51(3):319-325. https://doi.org/10.3347/kjp.2013.51.3.319
- Diaz-Cao JM, Adaszek L, Dziegiel B, Paniagua J, Caballero-Gomez J, et al. Prevalence of selected tick-borne pathogens in wild ungulates and ticks in southern Spain. Transbound Emerg Dis 2022;69(3):1084-1094. https://doi.org/10.1111/TBED.14065
- Matei IA, Estrada-Pena A, Cutler SJ, Vayssier-Taussat M, Varela-Castro L, et al. A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasites Vectors 2019;12(1):599. https://doi.org/10.1186/S13071-019-3852-6
- Roland L, Drillich M, Iwersen M. Hematology as a diagnostic tool in bovine medicine. J Vet Diagn Invest 2014;26(5):592-598. https://doi.org/10.1177/1040638714546490
- Forman S, Hungerford N, Yamakawa M, Yanase T, Tsai HJ, et al. Climate change impacts and risks for animal health in Asia. Rev Sci Tech 2008;27(2):581-597. https://doi.org/10.20506/RST.27.2.1814
- Giglioti R, Oliveira HN, Santana CH, Ibelli AMG, Neo TA, et al. Babesia bovis and Babesia bigemina infection levels estimated by qPCR in Angus cattle from an endemic area of Sao Paulo state, Brazil. Ticks Tick Borne Dis 2016;7(5):657-662. https://doi.org/10.1016/J.TTBDIS.2016.02.011
- Lawrence KE, Sanson RL, McFadden AMJ, Pulford DJ, Pomroy WE. The effect of month, farm type and latitude on the level of anaemia associated with Theileria orientalis Ikeda type infection in New Zealand cattle naturally infected at pasture. Res Vet Sci 2018;117:233-238. https://doi.org/10.1016/j.rvsc.2017.12.021
- Eamens GJ, Bailey G, Jenkins C, Gonsalves JR. Significance of Theileria orientalis types in individual affected beef herds in New South Wales based on clinical, smear and PCR findings. Vet Parasitol 2013;196(1-2):96-105. https://doi.org/10.1016/j.vetpar.2012.12.059