DOI QR코드

DOI QR Code

Implementation and Verification of Artificial Intelligence Drone Delivery System

인공지능 드론 배송 시스템의 구현 및 검증

  • Received : 2023.09.18
  • Accepted : 2023.11.15
  • Published : 2024.02.28

Abstract

In this paper, we propose the implementation of a drone delivery system using artificial intelligence in a situation where the use of drones is rapidly increasing and human errors are occurring. This system requires the implementation of an accurate control algorithm, assuming that last-mile delivery is delivered to the apartment veranda. To recognize the delivery location, a recognition system using the YOLO algorithm was implemented, and a delivery system was installed on the drone to measure the distance to the object and increase the delivery distance to ensure stable delivery even at long distances. As a result of the experiment, it was confirmed that the recognition system recognized the marker with a match rate of more than 60% at a distance of less than 10m while the drone hovered stably. In addition, the drone carrying a 500g package was able to withstand the torque applied as the rail lengthened, extending to 1.5m and then stably placing the package down on the veranda at the end of the rail.

Keywords

Acknowledgement

본 논문은 대한민국 공군 국고연구과제 (24-A1)의 지원을 받아 수행된 연구결과임.

References

  1. Y. S. Kim, J. B. Lee, C. Y. Lee, H. R. Jeon, S. P. Kim, "Implementation and Verification of Deep Learning-based Automatic Object Tracking and Handy Motion Control Drone System," IEMEK J. Embed. Sys. Appl.,, Vol. 16, No. 5, pp. 163-169, 2021.
  2. J. Redmon, A. Farhadi, "YOLOv3: An Incremental Improvement," arXiv preprint arXiv:1804.02767, 2018.
  3. K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni, K. Saulnier, K. Sun, A. Zhu, J. Delmerico, K. Karydis, N. Atanasov, G. Loianno, D. Scaramuzza, K. Daniilidis, C. J. Taylor, V. Kumar, "Fast, Autonomous Flight in GPS-denied and Cluttered Environments," Journal of Field Robotics, Vol. 35, No. 1, pp. 101-120, 2018. https://doi.org/10.1002/rob.21774
  4. M. Quigley, K. Mohta, S. S. Shivakumar, M. Watterson, Y. Mulgaonkar, M. Arguedas, K. Sun, S. Liu, B. Pfrommer, V. Kumar, C. J. Taylor, "The Open Vision Computer: An Integrated Sensing and Compute System for Mobile Robots," In 2019 International Conference on Robotics and Automation (ICRA), IEEE, pp. 1834-1840, 2019.
  5. S. Y. Lim, T. Y. Kim, H. J. Choi, G. H. Sim, S. W. Sim. "Recognizing and Tracking Moving Objects with Aerial Drones Using Video Calculation," Proceedings of Korean Association of Computer Education, pp. 109-113, 2017.
  6. J. M. Cho, "Application Trends of Deep LearningArtificial Intelligence in Autonomous Things," ETRI Electronics and Telecomm. Trends, Vol. 35, No. 6, pp. 1-11, 2020.
  7. T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, C. L. Zitnick, "Microsoft COCO: Common Objects in Context," In European Conference on Computer Vision, Springer, Cham, pp. 740-755, 2014.
  8. S. Y. Lim, T. Y. Kim, H. J. Choi, G. H. Sim, S. W. Sim. "Recognizing and Tracking Moving Objects with Aerial Drones Using Video Calculation," Proceedings of Korean Association of Computer Education, pp. 109-113, 2017.
  9. D. J. Park, J. S. Kim, H. Y. Hwang, W. C. Lee, "Implementation of Object Tracking System for Drone Using TLD Image Tracking Algorithm," Proceedings of the Institute of Electronics and Information Engineers, pp. 1460-1461, 2018.
  10. J. M. Cho, "Application Trends of Deep Learning Artificial Intelligence in Autonomous Things," ETRI Electronics and Telecomm. Trends, Vol. 35, No. 6, pp. 1-11, 2020.
  11. M. Quigley, K. Mohta, S. S. Shivakumar, M. Watterson, Y. Mulgaonkar, M. Arguedas, K. Sun, S. Liu, B. Pfrommer, V. Kumar, C. J. Taylor, "The Open Vision Computer: An Integrated Sensing and Compute System for Mobile Robots," In 2019 International Conference on Robotics and Automation (ICRA), IEEE, pp. 1834-1840, 2019.
  12. E. Oleynikova, "Mapping and Planning for Safe Collision Avoidance On-board Micro-aerial Vehicles," Doctoral Thesis, ETH Zurich, 2019.
  13. M. Bloesch, S. Omari, M. Hutter, R. Siegwart, "Robust Visual Inertial Odometry Using a Direct EKF-based Approach," IEEE/RSJ Int. Conf. Intell. Robot. Syst. (Hamburg, Germany), pp. 298-304, 2015.
  14. J. Zhang, S. Sanjiv, "Laser-visual-inertial Odometry and Mapping with High Robustness and Low Drift," J. Field Robot. Vol. 35, No. 8, pp. 1242-1264, 2018.
  15. S. S. Shivakumar, K. Mohta, B. Pfrommer, V. Kumar, C. J. Taylor, "Real Time Dense Depth Estimation by Fusing Stereo with Sparse Depth Measurements" In Proc. Int. Conf. Robot. Autom. (Montreal, Canada), pp. 6482-648, 2019.
  16. M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A. Bagnell, S. S. Srinivasa, "Chomp: Covariant Hamiltonian Optimization for Motion Planning," The Int. J. Robot. Res. Vol. 32, No. 9-10, pp. 1164-1193, 2013. https://doi.org/10.1177/0278364913488805
  17. S. Liu, N. Atanasov, K. Mohta, V Kumar, "Search-based Motion Planning for Quadrotors Using Linear Quadratic Minimum Time Control," in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (Vancouver, Canada), pp. 2872-2879. 2017.
  18. H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, E. Galceran, "Continuous-time Trajectory Optimization for Online UAV Replanning," In Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (Daejeon, Rep. of Korea), pp. 5332-5339, 2016.