DOI QR코드

DOI QR Code

Development of Composite-film-based Flexible Energy Harvester using Lead-free BCTZ Piezoelectric Nanomaterials

비납계 (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 압전 나노소재를 이용한 복합체 필름 기반의 플렉서블 에너지 하베스터 개발

  • Gwang Hyeon Kim (School of Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Hyeon Jun Park (School of Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Bitna Bae (School of Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Haksu Jang (School of Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Cheol Min Kim (School of Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Donghun Lee (School of Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Kwi-Il Park (School of Materials Science and Engineering, Kyungpook National University (KNU))
  • 김광현 (경북대학교 대학원 첨단소재공학부 금속재료공학전공) ;
  • 박현준 (경북대학교 대학원 첨단소재공학부 금속재료공학전공) ;
  • 배빛나 (경북대학교 대학원 첨단소재공학부 금속재료공학전공) ;
  • 장학수 (경북대학교 대학원 첨단소재공학부 금속재료공학전공) ;
  • 김철민 (경북대학교 대학원 첨단소재공학부 금속재료공학전공) ;
  • 이동훈 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 박귀일 (경북대학교 대학원 첨단소재공학부 금속재료공학전공)
  • Received : 2023.12.06
  • Accepted : 2023.12.27
  • Published : 2024.02.28

Abstract

Composite-based piezoelectric devices are extensively studied to develop sustainable power supply and self-powered devices owing to their excellent mechanical durability and output performance. In this study, we design a lead-free piezoelectric nanocomposite utilizing (Ba0.85 Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) nanomaterials for realizing highly flexible energy harvesters. To improve the output performance of the devices, we incorporate porous BCTZ nanowires (NWs) into the nanoparticle (NP)-based piezoelectric nanocomposite. BCTZ NPs and NWs are synthesized through the solid-state reaction and sol-gel-based electrospinning, respectively; subsequently, they are dispersed inside a polyimide matrix. The output performance of the energy harvesters is measured using an optimized measurement system during repetitive mechanical deformation by varying the composition of the NPs and NWs. A nanocomposite-based energy harvester with 4:1 weight ratio generates the maximum open-circuit voltage and short-circuit current of 0.83 V and 0.28 ㎂, respectively. In this study, self-powered devices are constructed with enhanced output performance by using piezoelectric energy harvesting for application in flexible and wearable devices.

Keywords

Acknowledgement

본 연구는 2023년도 과학기술정보통신부의 재원으로 한국연구재단의 지원(No. 2022R1A2C1003853)을 받아 수행 되었습니다.

References

  1. X. Fan, B. Liu, J. Ding, Y. Deng, X. Han, W. Hu and C. Zhong: Batter. Supercaps., 3 (2020) 1262.
  2. R. Bagherzadeh, S. Abrishami, A. Shirali and A. R. Rajabzadeh: Materials Today Sustainability., 20 (2022) 100233.
  3. A. E. Ostfeld, A. M. Gaikwad, Y. Khan and A. C. Arias: Sci. Rep., 6 (2016) 26122.
  4. D. Y. Hyeon and K.-I. Park: Energy Technol., 7 (2019) 1900638.
  5. C. K. Jeong, J. H. Lee, D. Y. Hyeon, Y.-G. Kim, S. H. Kim, C. Y. Baek, G.-J. Lee, M.-K. Lee, J.-J. Park and K.-I. Park: Appl. Surf. Sci., 512 (2020) 144784.
  6. H. B. Park, D. Y. Hyeon, M. W. Jung, K.-I. Park and J. S. Park: Compos. Part B, 203 (2020) 108476.
  7. S. Bairagi, I. Shahid ul, M. Shahadat, D. M. Mulvihill and W. Ali: Nano Energy, 111 (2023) 108414.
  8. Y. Yan, Z. Li, L. Jin, H. Du, M. Zhang, D. Zhang and Y. Hao: ACS Appl. Mater. Interfaces, 13 (2021) 38517. https://doi.org/10.1021/acsami.1c10298
  9. S. Leng, F. Ye, S. Wan, W. Shi and G. Ma: Ceram. Int., 49 (2023) 39479.
  10. J. E. Leal-Perez, J. Flores-Valenzuela, J. L. Almaral-Sanchez, S. F. Olive-Mendez, M. P. Cruz, O. Auciello and A. Hurtado-Macias: J. Eur. Ceram. Soc., 43 (2023) 7431.
  11. R. Yue, S. G. Ramaraj, H. Liu, D. Elamaran, V. Elamaran, V. Gupta, S. Arya, S. Verma, S. Satapathi, Y. hayawaka and X. Liu: J. Alloys Compd., 918 (2022) 165653.
  12. J. Wu, Z. Fan, D. Xiao, J. Zhu and J. Wang: Prog. Mater. Sci., 84 (2016) 335.
  13. J. Ma, X. Liu, C. Zhou, C. Yuan, W. Li and M. Jiang: Ceram. Int., 40 (2014) 2979.
  14. S. B. Li, L. M. Zhang, C. B. Wang, X. Ji and Q. Shen: Ceram. Int., 42 (2016) 18585.
  15. S. C. Park, C. Nam, C. Baek, M.-K. Lee, G.-J. Lee and K.-I. Park: ACS Sustainable Chem. Eng., 10 (2022) 14370.
  16. H. H. Fan, C. C. Jin, Y. Wang, H. L. Hwang and Y. F. Zhang: Ceram. Int., 43 (2017) 5875.
  17. K. I. Park, M. Lee, Y. Liu, S. Moon, G. T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang and K. J. Lee: Adv. Mater., 24 (2012) 2999.
  18. C. K. Jeong, D. Y. Hyeon, G.-T. Hwang, G.-J. Lee, M.-K. Lee, J.-J. Park and K.-I. Park: J. Mater. Chem. A, 7 (2019) 25481.
  19. Y.-G. Kim, K. T. Kim, S. C. Park, D. H. Heo, D. Y. Hyeon, S. P. R. Mallem and K.-I. Park: Nano Energy, 98 (2022) 107238.
  20. C. Baek, J. H. Yun, H. S. Wang, J. E. Wang, H. Park, K.-I. Park and D. K. Kim: Appl. Surf. Sci., 429 (2018) 164.
  21. C. Baek, J. H. Yun, J. E. Wang, C. K. Jeong, K. J. Lee, K. I. Park and D. K. Kim: Nanoscale, 8 (2016) 17632.
  22. Y. Shiratori, C. Pithan, J. Dornseiffer and R. Waser: J. Raman Spectrosc., 38 (2007) 1288.
  23. E. Venkata Ramana, A. Mahajan, M. P. F. Graca, S. K. Mendiratta, J. M. Monteiro and M. A. Valente: Mater. Res. Bull., 48 (2013) 4395.
  24. A. Hamza, F. Benabdallah, I. Kallel, L. Seveyrat, L. Lebrun and H. Khemakhem: J. Alloys Compd., 735 (2018) 2523.
  25. N. P. M. J. Raj, N. R. Alluri, G. Khandelwal and S.-J. Kim: J. Alloys Compd., 871 (2021) 159503.
  26. Y. Wang, C. Chen, S. Qian and X. Zhang: Mater. Lett., 338 (2023) 133953.
  27. F. Li, L. H. Wang, L. Jin, D. B. Lin, J. L. Li, Z. R. Li, Z. Xu and S. J. Zhang: IEEE Trans. Ulrason. Ferroelectr. Freq. Control, 62 (2015) 18.
  28. C. C. Jin, X. C. Liu, C. H. Liu, Y. Wang, H. L. Hwang and Q. Wang: Mater. Des., 144 (2018) 55.
  29. S. K. Ye, J. Y. H. Fuh and L. Lu: Appl. Phys. Lett., 100 (2012) 252906.
  30. C. K. Jeong, K. I. Park, J. Ryu, G. T. Hwang and K. J. Lee: Adv. Funct. Mater., 24 (2014) 2620.