DOI QR코드

DOI QR Code

Microstructural Evolution and Mechanical Properties of Ti-6Al-4V Alloy through Selective Laser Melting: Comprehensive Study on the Effect of Hot Isostatic Pressing (HIP)

  • Gargi Roy (Department of Materials Science & Engineering, Hanbat National University) ;
  • Raj Narayan Hajra (Department of Materials Science & Engineering, Hanbat National University) ;
  • Woo Hyeok Kim (Department of Materials Science & Engineering, Hanbat National University) ;
  • Jongwon Lee (Department of Materials Science & Engineering, Hanbat National University) ;
  • Sangwoo Kim (Department of Materials Processing, Korea Institute of Materials Science) ;
  • Jeoung Han Kim (Department of Materials Science & Engineering, Hanbat National University)
  • Received : 2023.12.08
  • Accepted : 2024.01.19
  • Published : 2024.02.28

Abstract

This study explores the profound impact of varying oxygen content on microstructural and mechanical properties in specimens HO and LO. The higher oxygen concentration in specimen HO is found to significantly influence alpha lath sizes, resulting in a size of 0.5-1 ㎛, contrasting with the 1-1.5 ㎛ size observed in specimen LO. Pore fraction, governed by oxygen concentration, is high in specimen HO, registering a value of 0.11%, whereas specimen LO exhibits a lower pore fraction (0.02%). Varied pore types in each specimen further underscore the role of oxygen concentration in shaping microstructural morphology. Despite these microstructural variations, the average hardness remains consistent at ~370 HV. This study emphasizes the pivotal role of oxygen content in influencing microstructural features, contributing to a comprehensive understanding of the intricate interplay between elemental composition and material properties.

Keywords

Acknowledgement

This work was supported by the Fundamental Research Program of the Korea Institute of Materials Science (PNK9260, KIMS). This work was also supported by the Technology Innovation Program [grant number 20016092], Development of Ti-6Al-4V alloy plate with 100 mm thickness by rolling process satisfying aerospace material specification, funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. C. Cui, B. Hu, L. Zhao and S. Liu: Mater. Des., 32 (2011) 1684.
  2. S. Liu and Y. C. Shin: Mater. Des., 164 (2019) 107552.
  3. E. Uhlmann, R. Kersting, T. B. Klein, M. F. Cruz and A. V. Borille: Procedia CIRP, 35 (2015) 55.
  4. N. A. Waterman and P. Dickens: World Class Design to Manufacture, 1 (1994) 27.
  5. L. Parry, I. A. Ashcroft and R. D. Wildman: Addit. Manuf., 12 (2016) 1.
  6. R. K. Gupta, V. A. Kumar, C. Mathew and G. S. Rao: Mater. Sci. Eng. A, 662 (2016) 537.
  7. C. de Formanoir, A. Brulard, S. Vives, G. Martin, F. Prima, S. Michotte, E. Riviere, A. Dolimont and S. Godet: Mater. Res. Lett., 5 (2017) 201.
  8. A. V. S. R. Prasad, K. Ramji and G. L. Datta: Procedia Mater. Sci., 5 (2014) 2567.
  9. H. Park, Y. W. Kim, S. Lee, K. T. Kim, J.-H. Yu, J. G. Kim and J. M. Park: J. Powder Mater., 30 (2023) 140.
  10. T. Y. Kim, M. H. Kang, J. H. Kim, J. K. Hong, J. H. Yu and J. I. Lee: J. Powder Mater., 29 (2022) 99.
  11. J.-Y. Kim, J. Woo, Y. Sohn, J. H. Kim and K.-A. Lee: J. Powder Mater., 30 (2023) 146.
  12. C. Park, R. Hajra, S. Kim, S.-H. Lee and J. Kim: J. Mater. Res. Technol., 25 (2023) 172.
  13. C. Park, R. Hajra, N. Adomako, W. Choo, S. Yang, S.-J. Seo and J. Kim: Mater. Lett., 337 (2023) 133936.
  14. N. K. Adomako, J. J. Lewandowski, B. M. Arkhurst, H. Choi, H. J. Chang and J. H. Kim: Addit. Manuf., 59 (2022) 103174.
  15. Standard Guide for Directed Energy Deposition of Metals, (n.d.). https://www.astm.org/f3187-16.html (accessed January 9, 2024).
  16. H. Tang, M. Qian, N. Liu, X. Zhang, G. Yang and J. Wang: JOM, 67 (2015) 555.
  17. R. O'Leary, R. Setchi, P. Prickett, G. Hankins and N. Jones: An Investigation into the Recycling of Ti-6Al-4V Powder Used Within SLM to Improve Sustainability, (n.d.).
  18. L. C. Ardila, F. Garciandia, J. B. Gonzalez-Diaz, P. Alvarez, A. Echeverria, M. M. Petite, R. Deffley and J. Ochoa: Phys. Procedia, 56 (2014) 99.
  19. G. Jacob, C. U. Brown, M. A. Donmez and S. S. Watson, Effects of powder recycling on stainless steel powder and built material properties in metal powder bed fusion processes, NIST (2017).
  20. P. Nandwana, W. Peter, R. Dehoff, L. Lowe, M. Kirka, F. Medina and S. Babu: Metall. Mater. Trans. B, 47 (2015) 754.
  21. W. A. Grell, E. Solis-Ramos, E. Clark, E. Lucon, E. J. Garboczi, P. K. Predecki, Z. Loftus and M. Kumosa: Addit. Manuf., 17 (2017) 123.
  22. M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens: Structure and Properties of Titanium and Titanium Alloys, in: Titanium and Titanium Alloys, John Wiley & Sons, Ltd, (2003) 1.
  23. M. Yan, M.S. Dargusch, T. Ebel and M. Qian: Acta Mater., 68 (2014) 196.