DOI QR코드

DOI QR Code

Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species

  • Wooram Choi (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Jeong Hun Cho (Research and Innovation Center, AMOREPACIFIC) ;
  • Sang Hee Park (Department of Biocosmetics, Sungkyunkwan University) ;
  • Dong Seon Kim (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Hwa Pyoung Lee (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Donghyun Kim (Research and Innovation Center, AMOREPACIFIC) ;
  • Hyun Soo Kim (Research and Innovation Center, AMOREPACIFIC) ;
  • Ji Hye Kim (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Jae Youl Cho (Department of Integrative Biotechnology, Sungkyunkwan University)
  • Received : 2023.04.04
  • Accepted : 2024.01.10
  • Published : 2024.03.01

Abstract

Background: Recently, plant-derived exosome-like nanoparticles (PDENs) have been isolated, and active research was focusing on understanding their properties and functions. In this study, the characteristics and molecular properties of ginseng root-derived exosome-like nanoparticles (GrDENs) were examined in terms of skin protection. Methods: HPLC-MS protocols were used to analyze the ginsenoside contents in GrDENs. To investigate the beneficial effect of GrDENs on skin, HaCaT cells were pre-treated with GrDENs (0-2 × 109 particles/mL), and followed by UVB irradiation or H2O2 exposure. In addition, the antioxidant activity of GrDENs was measured using a fluorescence microscope or flow cytometry. Finally, molecular mechanisms were examined with immunoblotting analysis. Results: GrDENs contained detectable levels of ginsenosides (Re, Rg1, Rb1, Rf, Rg2 (S), Gyp17, Rd, C-Mc1, C-O, and F2). In UVB-irradiated HaCaT cells, GrDENs protected cells from death and reduced ROS production. GrDENs downregulated the mRNA expression of proapoptotic genes, including BAX, caspase-1, -3, -6, -7, and -8 and the ratio of cleaved caspase-8, -9, and -3 in a dose-dependent manner. In addition, GrDENs reduced the mRNA levels of aging-related genes (MMP2 and 3), proinflammatory genes (COX-2 and IL-6), and cellular senescence biomarker p21, possibly by suppressing activator protein-1 signaling. Conclusions: This study demonstrates the protective effects of GrDENs against skin damage caused by UV and oxidative stress, providing new insights into beneficial uses of ginseng. In particular, our results suggest GrDENs as a potential active ingredient in cosmeceuticals to promote skin health.

Keywords

Acknowledgement

This research was funded by the Basic Science Research Program through the National Research Foundation of Korea (NRF), the Ministry of Science and ICT, Republic of Korea (2017R1A6A1A03015642) and by AmorePacific Co., Republic of Korea (2022).

References

  1. Loyer X, Vion A-C, Tedgui A, Boulanger CM. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res 2014;114:345-53.  https://doi.org/10.1161/CIRCRESAHA.113.300858
  2. Ohno S, Ishikawa A, Kuroda M. Roles of exosomes and microvesicles in disease pathogenesis. Adv Drug Deliv Rev 2013;65:398-401.  https://doi.org/10.1016/j.addr.2012.07.019
  3. Niu G, Jian T, Gai Y, Chen J. Microbiota and plant-derived vesicles that serve as therapeutic agents and delivery carriers to regulate metabolic syndrome. Adv Drug Deliv Rev 2023;196:114774. 
  4. Chronopoulos A, Kalluri R. Emerging role of bacterial extracellular vesicles in cancer. Oncogene 2020;39:6951-60.  https://doi.org/10.1038/s41388-020-01509-3
  5. An Q, Huckelhoven R, Kogel KH, van Bel AJ. Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol 2006;8:1009-19.  https://doi.org/10.1111/j.1462-5822.2006.00683.x
  6. Regente M, Pinedo M, Elizalde M, de la Canal L. Apoplastic exosome-like vesicles: a new way of protein secretion in plants? Plant Signal Behav 2012;7:544-6.  https://doi.org/10.4161/psb.19675
  7. Cho JH, Hong YD, Kim D, Park SJ, Kim JS, Kim H-M, et al. Confirmation of plant-derived exosomes as bioactive substances for skin application through comparative analysis of keratinocyte transcriptome. Appl Biol Chem 2022;65:8. 
  8. Liu H, Zhang Q, Wang S, Weng W, Jing Y, Su J. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: advances and perspectives. Bioact Mater 2022;14:169-81.  https://doi.org/10.1016/j.bioactmat.2021.12.006
  9. Imokawa G, Ishida K. Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging I: reduced skin elasticity, highly associated with enhanced dermal elastase activity, triggers wrinkling and sagging. Int J Mol Sci 2015;16:7753-75.  https://doi.org/10.3390/ijms16047753
  10. Salucci S, Burattini S, Battistelli M, Baldassarri V, Maltarello MC, Falcieri E. Ultraviolet B (UVB) irradiation-induced apoptosis in various cell lineages in vitro. Int J Mol Sci 2012;14:532-46.  https://doi.org/10.3390/ijms14010532
  11. Banerjee G, Gupta N, Kapoor A, Raman G. UV induced bystander signaling leading to apoptosis. Cancer Lett 2005;223:275-84.  https://doi.org/10.1016/j.canlet.2004.09.035
  12. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 2016;1863:2977-92.  https://doi.org/10.1016/j.bbamcr.2016.09.012
  13. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 2013;5:a008656. 
  14. Sollberger G, Strittmatter GE, Grossi S, Garstkiewicz M. Auf dem Keller U, French LE et al. Caspase-1 activity is required for UVB-induced apoptosis of human keratinocytes. J Invest Dermatol 2015;135:1395-404.  https://doi.org/10.1038/jid.2014.551
  15. Pena-Blanco A, Garcia-Saez AJ. Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J 2018;285:416-31.  https://doi.org/10.1111/febs.14186
  16. Perluigi M, Di Domenico F, Blarzino C, Foppoli C, Cini C, Giorgi A, et al. Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: a proteomic approach. Proteome Sci 2010;8:13. 
  17. Kovacs D, Raffa S, Flori E, Aspite N, Briganti S, Cardinali G, et al. Keratinocyte growth factor down-regulates intracellular ROS production induced by UVB. J Dermatol Sci 2009;54:106-13.  https://doi.org/10.1016/j.jdermsci.2009.01.005
  18. Amstad P, Crawford D, Muehlematter D, Zbinden I, Larsson R, Cerutti P. Oxidants stress induces the proto-oncogenes, C-fos and C-myc in mouse epidermal cells. Bull Cancer 1990;77:501-2. 
  19. Devary Y, Gottlieb RA, Lau LF, Karin M. Rapid and preferential activation of the cjun gene during the mammalian UV response. Mol Cell Biol 1991;11:2804-11.  https://doi.org/10.1128/MCB.11.5.2804
  20. Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med (Berl) 1996;74:589-607.  https://doi.org/10.1007/s001090050063
  21. Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci 2016;17:686. 
  22. Buckman SY, Gresham A, Hale P, Hruza G, Anast J, Masferrer J, et al. COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis 1998;19:723-9.  https://doi.org/10.1093/carcin/19.5.723
  23. Oh J, Kim JH, Park JG, Yi YS, Park KW, Rho HS, et al. Radical scavenging activity-based and AP-1-targeted anti-inflammatory effects of lutein in macrophage-like and skin keratinocytic cells. Mediat Inflamm 2013;2013:787042. 
  24. Uluckan O, Guinea-Viniegra J, Jimenez M, Wagner EF. Signalling in inflammatory skin disease by AP-1 (Fos/Jun). Clin Exp Rheumatol 2015;33:S44-9. 
  25. Salminen A, Kaarniranta K, Kauppinen A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res 2022;71:817-31.  https://doi.org/10.1007/s00011-022-01598-8
  26. Cho EG, Choi SY, Kim H, Choi EJ, Lee EJ, Park PJ, et al. Panax ginseng-derived extracellular vesicles facilitate anti-senescence effects in human skin cells: an eco-friendly and sustainable way to use ginseng substances. Cells 2021:10:486. 
  27. de Jager TL, Cockrell AE, Du Plessis SS. Ultraviolet light induced generation of reactive oxygen species. Adv Exp Med Biol 2017;996:15-23.  https://doi.org/10.1007/978-3-319-56017-5_2
  28. Tu Y, Quan T. Oxidative stress and human skin connective tissue aging. Cosmetics 2016;3:28. 
  29. Ho CY, Dreesen O. Faces of cellular senescence in skin aging. Mech Ageing Dev 2021;198:111525. 
  30. Bergman MR, Cheng S, Honbo N, Piacentini L, Karliner JS, Lovett DH. A functional activating protein 1 (AP-1) site regulates matrix metalloproteinase 2 (MMP-2) transcription by cardiac cells through interactions with JunB-Fra1 and JunB-FosB heterodimers. Biochem J 2003;369:485-96.  https://doi.org/10.1042/bj20020707
  31. Hungness ES, Pritts TA, Luo G-j, Sun X, Penner GC, Hasselgren P-O. The transcription factor activator protein-1 is activated and interleukin-6 production is increased in interleukin-1β-stimulated human enterocytes. Shock 2000;14:386-91.  https://doi.org/10.1097/00024382-200014030-00025
  32. Chung YW, Jeong DW, Won JY, Choi EJ, Choi YH, Kim IY. H2O2-induced AP-1 activation and its effect on p21WAF1/CIP1-mediated G2/M arrest in a p53-deficient human lung cancer cell. Biochem Biophys Res Commun 2002;293:1248-53.  https://doi.org/10.1016/S0006-291X(02)00360-1
  33. Jakaria M, Haque ME, Kim J, Cho DY, Kim IS, Choi DK. Active ginseng components in cognitive impairment: therapeutic potential and prospects for delivery and clinical study. Oncotarget 2018;9:33601-20.  https://doi.org/10.18632/oncotarget.26035
  34. Ahuja A, Kim JH, Kim JH, Yi YS, Cho JY. Functional role of ginseng-derived compounds in cancer. J Ginseng Res 2018;42:248-54.  https://doi.org/10.1016/j.jgr.2017.04.009
  35. Kim JK, Shin KK, Kim H, Hong YH, Choi W, Kwak YS, et al. Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice. J Ginseng Res 2021;45:717-25.  https://doi.org/10.1016/j.jgr.2021.03.009
  36. Lee S, Rhee DK. Effects of ginseng on stress-related depression, anxiety, and the hypothalamic-pituitary-adrenal axis. J Ginseng Res 2017;41:589-94.  https://doi.org/10.1016/j.jgr.2017.01.010
  37. Yang Y, Wang H, Zhang M, Shi M, Yang C, Ni Q, et al. Safety and antifatigue effect of Korean Red Ginseng capsule: a randomized, double-blind and placebo-controlled clinical trial. J Ginseng Res 2022;46:543-9.  https://doi.org/10.1016/j.jgr.2021.09.001
  38. Park SK, Hyun SH, G Park CK, Kwak YS, Jang YJ, et al. The antioxidant activities of Korean Red Ginseng (Panax ginseng) and ginsenosides: a systemic review through in vivo and clinical trials. J Ginseng Res 2021;45:41-7.  https://doi.org/10.1016/j.jgr.2020.09.006
  39. Shin KK, Yi YS, Kim JK, Kim H, Hossain MA, Kim JH, et al. Korean red ginseng plays an anti-aging role by modulating expression of aging-related genes and immune cell subsets. Molecules 2020;25:1492. 
  40. Park SJ, Nam J, Ahn CW, Kim Y. Anti-diabetic properties of different fractions of Korean red ginseng. J Ethnopharmacol 2019;236:220-30.  https://doi.org/10.1016/j.jep.2019.01.044
  41. De Robertis M, Sarra A, D'Oria V, Mura F, Bordi F, Postorino P, et al. Blueberry-derived exosome-like nanoparticles counter the response to TNF-alpha-induced change on gene expression in EA.hy926 cells. Biomolecules 2020;10:742. 
  42. Perut F, Roncuzzi L, Avnet S, Massa A, Zini N, Sabbadini S, et al. Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells. Biomolecules 2021:11:87. 
  43. Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res 2014;58:1561-73.  https://doi.org/10.1002/mnfr.201300729
  44. Yu SH, Huang HY, Korivi M, Hsu MF, Huang CY, Hou CW, et al. Oral Rg1 supplementation strengthens antioxidant defense system against exercise-induced oxidative stress in rat skeletal muscles. J Int Soc Sports Nutr 2012;9:23. 
  45. Gao Y, Chu S, Shao Q, Zhang M, Xia C, Wang Y, et al. Antioxidant activities of ginsenoside Rg1 against cisplatin-induced hepatic injury through Nrf2 signaling pathway in mice. Free Radic Res 2017;51:1-13.  https://doi.org/10.1080/10715762.2016.1234710
  46. Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, et al. Differential effects of ginsenosides on NO and TNF-α production by LPS-activated N9 microglia. Int Immunopharm 2007;7:313-20.  https://doi.org/10.1016/j.intimp.2006.04.021
  47. Gao C, Zhang K, Liang F, Ma W, Jiang X, Wang H, et al. Inhibition of the Ras/ ERK1/2 pathway contributes to the protective effect of ginsenoside Re against intimal hyperplasia. Food Funct 2021;12:6755-65.  https://doi.org/10.1039/D1FO00015B
  48. Deng HL, Zhang JT. Anti-lipid peroxilative effect of ginsenoside Rb1 and Rg1. Chin Med J (Engl) 1991;104:395-8. 
  49. Cong L, Ma J, Zhang Y, Zhou Y, Cong X, Hao M. Effect of anti-skin disorders of ginsenosides- A Systematic Review. J Ginseng Res 2023;47:605-14.  https://doi.org/10.1016/j.jgr.2023.04.005
  50. Zhang B, Cui X, Jin HH, Hong L, Liu X, Li X, et al. Ginsenoside Re prevents angiotensin II-induced gap-junction remodeling by activation of PPARgamma in isolated beating rat atria. Life Sci 2017;190:36-45.  https://doi.org/10.1016/j.lfs.2017.09.027
  51. Cho JS, Moon YM, Um JY, Moon JH, Park IH, Lee HM. Inhibitory effect of ginsenoside Rg1 on extracellular matrix production via extracellular signal-regulated protein kinase/activator protein 1 pathway in nasal polyp-derived fibroblasts. Exp Biol Med (Maywood) 2012;237:663-9.  https://doi.org/10.1258/ebm.2012.011342
  52. Kanchanapally R, Khan MA, Deshmukh SK, Srivastava SK, Khushman M, Singh S, et al. Exosomal formulation escalates cellular uptake of honokiol leading to the enhancement of its antitumor efficacy. ACS Omega 2020;5:23299-307.  https://doi.org/10.1021/acsomega.0c03136
  53. Xiao J, Feng S, Wang X, Long K, Luo Y, Wang Y, et al. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ 2018;6:e5186. 
  54. Hansen LL, Nielsen ME. Plant exosomes: using an unconventional exit to prevent pathogen entry? J Exp Bot 2017;69:59-68.  https://doi.org/10.1093/jxb/erx319
  55. Regente M, Pinedo M, San Clemente H, Balliau T, Jamet E, de la Canal L. Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. J Exp Bot 2017;68:5485-95.  https://doi.org/10.1093/jxb/erx355
  56. Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 2018;360:1126-9.  https://doi.org/10.1126/science.aar4142
  57. Baldini N, Torreggiani E, Roncuzzi L, Perut F, Zini N, Avnet S. Exosome-like nanovesicles isolated from Citrus limon L. exert antioxidative effect. Curr Pharm Biotechnol 2018;19:877-85. https://doi.org/10.2174/1389201019666181017115755