DOI QR코드

DOI QR Code

Mass spectrometry-based ginsenoside profiling: Recent applications, limitations, and perspectives

  • Hyun Woo Kim (College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University) ;
  • Dae Hyun Kim (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Byeol Ryu (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • You Jin Chung (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Kyungha Lee (College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University) ;
  • Young Chang Kim (Future Agriculture Strategy Team, Research Policy Bureau, Rural Development Administration) ;
  • Jung Woo Lee (Ginseng Division, Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Dong Hwi Kim (Ginseng Division, Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Woojong Jang (Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine) ;
  • Woohyeon Cho (Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University) ;
  • Hyeonah Shim (Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University) ;
  • Sang Hyun Sung (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Tae-Jin Yang (Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kyo Bin Kang (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University)
  • Received : 2023.11.23
  • Accepted : 2024.01.14
  • Published : 2024.03.01

Abstract

Ginseng, the roots of Panax species, is an important medicinal herb used as a tonic. As ginsenosides are key bioactive components of ginseng, holistic chemical profiling of them has provided many insights into understanding ginseng. Mass spectrometry has been a major methodology for profiling, which has been applied to realize numerous goals in ginseng research, such as the discrimination of different species, geographical origins, and ages, and the monitoring of processing and biotransformation. This review summarizes the various applications of ginsenoside profiling in ginseng research over the last three decades that have contributed to expanding our understanding of ginseng. However, we also note that most of the studies overlooked a crucial factor that influences the levels of ginsenosides: genetic variation. To highlight the effects of genetic variation on the chemical contents, we present our results of untargeted and targeted ginsenoside profiling of different genotypes cultivated under identical conditions, in addition to data regarding genome-level genetic diversity. Additionally, we analyze the other limitations of previous studies, such as imperfect variable control, deficient metadata, and lack of additional effort to validate causation. We conclude that the values of ginsenoside profiling studies can be enhanced by overcoming such limitations, as well as by integrating with other -omics techniques.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean Government (Ministry of Science and ICT; 2022M3H9A2082952, 2018R1A5A2023127, and RS2023-00211868) and a grant (21173MFDS561) from the Ministry of Food and Drug Safety of Korea in 2023.

References

  1. Park H-J, Kim D-H, Park S-J, Kim J-M, Ryu J-H. Ginseng in traditional herbal prescriptions. J Ginseng Res 2012;36:225-41.
  2. Kim Y-S, Woo J-Y, Han C-K, Chang I-M. Safety analysis of Panax ginseng in randomized clinical trials: a systematic review. Medicines 2015;2:106-26.
  3. Kitagawa I, Taniyama T, Yoshikawa M, Ikenishi Y, Nakagawa Y. Chemical studies on crude drug processing. VI.: chemical structures of malonyl-ginsenosides Rb1, Rb2, Rc, and Rd isolated from the root of Panax ginseng C. A. Meyer. Chem Pharm Bull 1989;37:2961-70.
  4. Liu Z, Li Y, Li X, Ruan C-C, Wang L-J, Sun G-Z. The effects of dynamic changes of malonyl ginsenosides on evaluation and quality control of Panax ginseng C. A. Meyer. J Pharm Biomed Anal 2012;64-65:56-63.
  5. Shin B-K, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287-98.
  6. Wang Y, Choi H-K, Brinckmann JA, Jiang X, Huang L. Chemical analysis of Panax quinquefolius (North American ginseng): a review. J Chromatogr A 2015;1426:1-15.
  7. Wang T, Guo R, Zhou G, Zhou X, Kou Z, Sui F, Li C, Tang L, Wang Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: a review. J Ethnopharmacol 2016;188:234-58.
  8. Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, Li N. Analytical methods and biological activities of Panax notoginseng saponins: recent trends. J Ethnopharmacol 2019;236:443-65.
  9. Yang Y, Ju Z, Yang Y, Zhang Y, Yang L, Wang Z. Phytochemical analysis of Panax species: a review. J Ginseng Res 2021;45:1-21.
  10. Li X, Liu J, Zuo T-T, Hu Y, Li Z, Wang H-D, Xu W-Y, Yang W-Z, Guo D-A. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022;39:875-909.
  11. van Breemen RB, Huang C-R, Lu Z-Z, Rimando A, Fong HHS, Fitzloff JF. Electrospray liquid chromatography/mass spectrometry of ginsenosides. Anal Chem 1995;67:3985-9.
  12. Wang X, Sakuma T, Asafu-Adjaye E, Shiu GK. Determination of ginsenosides in plant extracts from Panax ginseng and Panax quinquefolius L. by LC/MS/MS. Anal Chem 1999;71:1579-84.
  13. Fuzzati N, Gabetta B, Jayakar K, Pace R, Peterlongo F. Liquid chromatography-electrospray mass spectrometric identification of ginsenosides in Panax ginseng roots. J Chromatogr A 1999;854:69-79.
  14. Yang W-Z, Ye M, Qiao X, Liu C-F, Miao W-J, Bo T, Tao H-Y, Guo D-A. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides. Anal Chim Acta 2012;739:56-66.
  15. Patti GJ, Yanes O, Siuzdak G. Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 2012;13:263-9.
  16. Borsch T, Berendsohn W, Dalcin E, Delmas M, Demissew S, Elliott A, Fritsch P, Fuchs A, Geltman D, Guner A, et al. World Flora Online: placing taxonomists at the heart of a definitive and comprehensive global resource on the world's plants. Taxon 2020;69:1311-41.
  17. Ji QC, Harkey MR, Henderson GL, Gershwin ME, Stern JS, Hackman RM. Quantitative determination of ginsenosides by high-performance liquid chromatography-tandem mass spectrometry. Phytochem Anal 2001;12:320-6.
  18. Chan TWD, But PPH, Cheng SW, Kwok IMY, Lau FW, Xu HX. Differentiation and authentication of Panax ginseng, Panax quinquefolius, and ginseng products by using HPLC/MS. Anal Chem 2000;72:1281-7.
  19. Li W, Gu C, Zhang H, Awang DVC, Fitzloff JF, Fong HHS, van Breemen RB. Use of high-performance liquid chromatography-tandem mass spectrometry to distinguish Panax ginseng C. A. Meyer (Asian ginseng) and Panax quinquefolius L. (North American ginseng). Anal Chem 2000;72:5417-22.
  20. Park H-W, In G, Kim J-H, Cho B-G, Han G-H, Chang I-M. Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius) using UPLC-QTOF MS. J Ginseng Res 2014;38:59-65.
  21. Yuk J, Patel DN, Isaac G, Smith K, Wrona M, Olivos HJ, Yu K. Chemical profiling of ginseng species and ginseng herbal products using UPLC/QTOF-MS. J Braz Chem Soc 2016;27:1476-83.
  22. Yang W, Qiao X, Li K, Fan J, Bo T, Guo D-A, Ye M. Identification and differentiation of Panax ginseng, Panax quinquefolium, and Panax notoginseng by monitoring multiple diagnostic chemical markers. Acta Pharm Sin B 2016;6:568-75.
  23. Shi X-J, Yang W-Z, Qiu S, Yao C-L, Shen Y, Pan H-Q, Bi Q-R, Yang M, Wu W-Y, Guo D-A. An in-source multiple collision-neutral loss filtering based nontargeted metabolomics approach for the comprehensive analysis of malonyl-ginsenosides from Panax ginseng, P. quinquefolius, and P. notoginseng. Anal Chim Acta 2017;952:59-70.
  24. Shi X, Yang W, Huang Y, Hou J, Qiu S, Yao C, Feng Z, Wei W, Wu W, Guo D. Direct screening of malonylginsenosides from nine Ginseng extracts by an untargeted profiling strategy incorporating in-source collision-induced dissociation, mass tag, and neutral loss scan on a hybrid linear ion-trap/Orbitrap mass spectrometer coupled to ultra-high performance liquid chromatography. J Chromatogr A 2018; 1571:213-22.
  25. Yang W-Z, Shi X-J, Yao C-L, Huang Y, Hou J-J, Han S-M, Feng Z-J, Wei W-L, Wu WY, Guo D-A. A novel neutral loss/product ion scan-incorporated integral approach for the untargeted characterization and comparison of the carboxyl-free ginsenosides from Panax ginseng, Panax quinquefolius, and Panax notoginseng. J Pharm Biomed Anal 2020;177:112813.
  26. Kim S, Shin B-K, Lim DK, Yang T-J, Lim J, Park JH, Kwon SW. Expeditious discrimination of four species of the Panax genus using direct infusion-MS/MS combined with multivariate statistical analysis. J Chromatogr B 2015;1002:329-36.
  27. Cassago ALL, Artˆencio MM, de Moura Engracia Giraldi J, Da Costa FB. Metabolomics as a marketing tool for geographical indication products: a literature review. Eur Food Res Technol 2021;247:2143-59.
  28. Song H-H, Kim D-Y, Woo S, Lee H-K, Oh S-R. An approach for simultaneous determination for geographical origins of Korean Panax ginseng by UPLC-QTOF/MS coupled with OPLS-DA models. J Ginseng Res 2013;37:341-8.
  29. Song H-H, Moon JY, Ryu HW, Noh B-S, Kim J-H, Lee H-K, Oh S-R. Discrimination of white ginseng origins using multivariate statistical analysis of data sets. J Ginseng Res 2014;38:187-93.
  30. Zhang C, Liu Z, Lu S, Xiao L, Xue Q, Jin H, Gan J, Li X, Liu Y, Liang X. Rapid discrimination and prediction of ginsengs from three origins based on UHPLC-QTOF-MS combined with SVM. Molecules 2022;27:4225.
  31. Chen W, Balan P, Popovich DG. Analysis of ginsenoside content (Panax ginseng) from different regions. Molecules 2019;24:3491.
  32. Yoon D, Shin W-C, Oh S-M, Choi B-R, Lee DY. Integration of multiplatform metabolomics and multivariate analysis for geographical origin discrimination of Panax ginseng. Food Res Int 2022;159:111610.
  33. Shuai M, Yang Y, Bai F, Cao L, Hou R, Peng C, Cai H. Geographical origin of American ginseng (Panax quinquefolius L.) based on chemical composition combined with chemometric. J Chromatogr A 2022;1676:463284.
  34. Pang S, Piao X, Zhang X, Chen X, Zhang H, Jin Y, Li Z, Wang Y. Discrimination for geographical origin of Panax quinquefolius L. using UPLC Q-Orbitrap MS-based metabolomics approach. Food Sci Nutr 2023;11:4843-52.
  35. Wang Y, Pan J-Y, Xiao X-Y, Lin R-C, Cheng Y-Y. Simultaneous determination of ginsenosides in Panax ginseng with different growth ages using high-performance liquid chromatography-mass spectrometry. Phytochem Anal 2006;17:424-30.
  36. Kim N, Kim K, Choi BY, Lee D, Shin Y-S, Bang K-H, Cha S-W, Lee JW, Choi H-K, Jang DS, et al. Metabolomic approach for age discrimination of Panax ginseng using UPLC-Q-Tof MS. J Agric Food Chem 2011;59:10435-41.
  37. Kim N, Kim K, Lee D, Shin Y-S, Bang K-H, Cha S-W, Lee JW, Choi H-K, Hwang BY, Lee D. Nontargeted metabolomics approach for age differentiation and structure interpretation of age-dependent key constituents in hairy roots of Panax ginseng. J Nat Prod 2012;75:1777-84.
  38. Huang B-M, Zha Q-L, Chen T-B, Xiao S-Y, Xie Y, Luo P, Wang Y-P, Liu L, Zhou H. Discovery of markers for discriminating the age of cultivated ginseng by using UHPLC-QTOF/MS coupled with OPLS-DA. Phytomedicine 2018;45:8-17.
  39. Bai H, Wang S, Liu J, Gao D, Jiang Y, Liu H, Cai Z. Localization of ginsenosides in Panax ginseng with different age by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry imaging. J Chromatogr B 2016;1026:263-71.
  40. Lee JW, Ji S-H, Lee Y-S, Choi DJ, Choi B-R, Kim G-S, Baek N-I, Lee DY. Mass spectrometry based profiling and imaging of various ginsenosides from Panax ginseng roots at different ages. Int J Mol Sci 2017;18:1114.
  41. Yang Y, Yang Y, Qiu H, Ju Z, Shi Y, Wang Z, Yang L. Localization of constituents for determining the age and parts of ginseng through ultraperfomance liquid chromatography quadrupole/time of flight-mass spectrometry combined with desorption electrospray ionization mass spectrometry imaging. J Pharm Biomed Anal 2021;193:113722.
  42. Xu X-F, Cheng X-L, Lin Q-H, Li S-S, Jia Z, Han T, Lin R-C, Wang D, Wei F, Li X-R. Identification of mountain-cultivated ginseng and cultivated ginseng using UPLC/oa-TOF MSE with a multivariate statistical sample-profiling strategy. J Ginseng Res 2016;40:344-50.
  43. Zhu H, Lin H, Tan J, Wang C, Wang H, Wu F, Dong Q, Liu Y, Li P, Liu J. UPLCQTOF/MS-based nontargeted metabolomic analysis of mountain- and gardencultivated ginseng of different ages in Northeast China. Molecules 2018;24:33.
  44. Guo N, Yang Y, Yang X, Guan Y, Yang J, Quan J, Yan H, Hou W, Zhang G. Growth age of mountain cultivated ginseng affects its chemical composition. Ind Crops Prod 2021;167:113531.
  45. Qu H, Wang J, Yao C, Wei X, Wu Y, Cheng M, He X, Li J, Wei W, Zhang J, et al. Enhanced profiling and quantification of ginsenosides from mountain-cultivated ginseng and comparison with garden-cultivated ginseng. J Chromatogr A 2023;1692:463826.
  46. Hasegawa H, Sung JH, Matsumiya S, Uchiyama M. Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med 1996;62:453-7.
  47. Hasegawa H, Sung JH, Benno Y. Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med 1997;63:436-40.
  48. Akao T, Kanaoka M, Kobashi K. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration: measurement of compound K by enzyme immunoassay. Biol Pharm Bull 1998;21:245-9.
  49. Akao T, Kida H, Kanaoka M, Hattori M, Kobashi K. Drug metabolism: intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J Pharm Pharmacol 1998;50:1155-60.
  50. Lee SM, Bae B-S, Park H-W, Ahn N-G, Cho B-G, Cho Y-L, Kwak Y-S. Characterization of Korean Red ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39:384-91.
  51. Huang L, Li H-J, Wu Y-C. Processing technologies, phytochemistry, bioactivities and applications of black ginseng - a novel manufactured ginseng product: a comprehensive review. Food Chem 2023;407:134714.
  52. Zhang H-M, Li S-L, Zhang H, Wang Y, Zhao Z-L, Chen S-L, Xu H-X. Holistic quality evaluation of commercial white and red ginseng using a UPLC-QTOF-MS/MS-based metabolomics approach. J Pharm Biomed Anal 2012;62:258-73.
  53. Xie Y-Y, Luo D, Cheng Y-J, Ma J-F, Wang Y-M, Liang Q-L, Luo G-A. Steaminginduced chemical transformations and holistic quality assessment of red ginseng derived from Panax ginseng by means of HPLC-ESI-MS/MSn-based multicomponent quantification fingerprint. J Agric Food Chem 2012;60:8213-24.
  54. Sun B-S, Xu M-Y, Li Z, Wang Y-B, Sung C-K. UPLC-Q-TOF-MS/MS analysis for steaming times-dependent profiling of steamed Panax quinquefolius and its ginsenosides transformations induced by repetitious steaming. J Ginseng Res 2012; 36:277-90.
  55. Chu C, Xu S, Li X, Yan J, Liu L. Profiling the ginsenosides of three ginseng products by LC-Q-TOF/MS. J Food Sci 2013;78:C653-9.
  56. Eom SJ, Kim K-T, Paik H-D. Microbial bioconversion of ginsenosides in Panax ginseng and their improved bioactivities. Food Rev Int 2018;34:698-712.
  57. Bai Y, Ganzle MG. Conversion of ginsenosides by Lactobacillus plantarum studied by liquid chromatography coupled to quadrupole trap mass spectrometry. Food Res Int 2015;76:709-18.
  58. Xiao D, Xiu Y, Yue H, Sun X, Zhao H, Liu S. A comparative study on chemical composition of total saponins extracted from fermented and white ginseng under the effect of macrophage phagocytotic function. J Ginseng Res 2017;41:379-85.
  59. Kim K. Effect of ginseng and ginsenosides on melanogenesis and their mechanism of action. J Ginseng Res 2015;39:1-6.
  60. Li F, Lv C, Li Q, Wang J, Song D, Liu P, Zhang D, Lu J. Chemical and bioactive comparison of flowers of Panax ginseng Meyer, Panax quinquefolius L., and Panax notoginseng Burk. J Ginseng Res 2017;41:487-95.
  61. Jia L, Zuo T, Zhang C, Li W, Wang H, Hu Y, Wang X, Qian Y, Yang W, Yu H. Simultaneous profiling and holistic comparison of the metabolomes among the flower buds of Panax ginseng, Panax quinquefolius, and Panax notoginseng by UHPLC/IM-QTOF-HDMSE -based metabolomics analysis. Molecules 2019;24:2188.
  62. Yoon D, Choi B-R, Kim Y-C, Oh SM, Kim H-G, Kim J-U, Baek N-I, Kim S, Lee DY. Comparative analysis of Panax ginseng berries from seven cultivars using UPLCQTOF/MS and NMR-based metabolic profiling. Biomolecules 2019;9:424.
  63. Chang X, Zhang J, Li D, Zhou D, Zhang Y, Wang J, Hu B, Ju A, Ye Z. Nontargeted metabolomics approach for the differentiation of cultivation ages of mountain cultivated ginseng leaves using UHPLC/QTOF-MS. J Pharm Biomed Anal 2017; 141:108-22.
  64. Cho W-H. Establishment of high-throughput digital genotyping system for Panax ginseng and Triticum aestivum [dissertation]. Seoul: Seoul National University;2021.
  65. Ma K-H, Dixit A, Kim Y-C, Lee D-Y, Kim T-S, Cho E-G, Park Y-J. Development and characterization of new microsatellite markers for ginseng (Panax ginseng C. A. Meyer). Conserv Genet 2007;8:1507-9.
  66. Choi H-I, Kim NH, Kim JH, Choi BS, Ahn I-O, Lee J-S, Yang T-J. Development of reproducible EST-derived SSR markers and assessment of genetic diversity in Panax ginseng cultivars and related species. J Ginseng Res 2011;35:399-412.
  67. Jang W, Jang Y, Kim N-H, Waminal NE, Kim YC, Lee JW, Yang T-J. Genetic diversity among cultivated and wild Panax ginseng populations revealed by highresolution microsatellite markers. J Ginseng Res 2020;44:637-43.
  68. Lee KJ, Lee J-R, Sebastin R, Cho G-T, Hyun DY. Molecular genetic diversity and population structure of ginseng germplasm in RDA-genebank: implications for breeding and conservation. Agronomy 2020;10:68.
  69. Beniddir MA, Kang KB, Genta-Jouve G, Huber F, Rogers S, van der Hooft Jjj. Advances in decomposing complex metabolite mixtures using substructure- and network-based computational metabolomics approaches. Nat Prod Rep 2021;38:1967-93.
  70. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 2016;34:828-37.
  71. Bittremieux W, Avalon NE, Thomas SP, Kakhkhorov SA, Aksenov AA, Gomes PWP, et al. Open access repository-scale propagated nearest neighbor suspect spectral library for untargeted metabolomics. Nat Commun 2023;14:8488..
  72. Harrieder E-M, Kretschmer F, Dunn W, Bocker S, Witting M. Critical assessment of chromatographic metadata in publicly available metabolomics data repositories. Metabolomics 2022;18:97.
  73. Fahy E, Subramaniam S. RefMet: a reference nomenclature for metabolomics. Nat Methods 2020;17:1173-4.
  74. Koistinen V, Karkkainen O, Keski-Rahkonen P, Tsugawa H, Scalbert A, Arita M, Wishart D, Hanhineva K. Towards a Rosetta stone for metabolomics: recommendations to overcome inconsistent metabolite nomenclature. Nat Metab 2023;5:351-4.
  75. Wang S, Qian Y-Q, Zhao R-P, Chen L-L, Song J-M. Graph-based pan-genomes: increased opportunities in plant genomics. J Exp Bot 2023;74:24-39.
  76. Editorial. Defining the scientific method. Nat Methods 2009;6:237.
  77. Sun Y, Liu X, Fu X, Xu W, Guo Q, Zhang Y. Discrepancy study of the chemical constituents of Panax ginseng from different growth environments with UPLC-MSbased metabolomics strategy. Molecules 2023;28:2928.
  78. Zhu G, Wang S, Huang Z, Zhang S, Liao Q, Zhang C, et al. Rewiring of the fruit metabolome in tomato breeding. Cell 2018;172. 249-261.e12.
  79. Garbowicz K, Liu Z, Alseekh S, Tieman D, Taylor M, Kuhalskaya A, Ofner I, Zamir D, Klee HJ, Fernie AR, et al. Quantitative trait loci analysis identifies a prominent gene involved in the production of fatty acid-derived flavor volatiles in tomato. Mol Plant 2018;11:1147-65.
  80. Szymanski J, Bocobza S, Panda S, Sonawane P, C' ardenas PD, Lashbrooke J, Kamble A, Shahaf N, Meir S, Bovy A, et al. Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response. Nat Genet 2020;52:1111-21.
  81. Tieman D, Zhu G, Resende Jr MFR, Lin T, Nguyen C, Bies D, Rambla JL, Beltran KSO, Taylor M, Zhang B, et al. A chemical genetic roadmap to improved tomato flavor. Science 2017;355:391-4.
  82. Kim N-H, Jayakodi M, Lee S-C, Choi B-S, Jang W, Lee J, Kim HH, Waminal NE, Lakshmanan M, Nguyen Bv, et al. Genome and evolution of the shade-requiring medicinal herb Panax ginseng. Plant Biotechnol J 2018;16:1904-17.
  83. Kang KB, Jayakodi M, Lee YS, Nguyen VB, Park H-S, Koo HJ, Choi IY, Kim DH, Chung YJ, Ryu B, et al. Identification of candidate UDP-glycosyltransferases involved in protopanaxadiol-type ginsenoside biosynthesis in Panax ginseng. Sci Rep 2018;8:11744.
  84. Koo H, Lee YS, Nguyen VB, Giang VNL, Koo HJ, Park H-S, Mohanan P, Song YH, Ryu B, Kang KB, et al. Comparative transcriptome and metabolome analyses of four Panax species explore the dynamics of metabolite biosynthesis. J Ginseng Res 2023;47:44-53.
  85. Lee YS, Park H-S, Lee D-K, Jayakodi M, Kim N-H, Koo HJ, Lee S-C, Kim YJ, Kwon SW, Yang T-J. Integrated transcriptomic and metabolomic analysis of five Panax ginseng cultivars reveals the dynamics of ginsenoside biosynthesis. Front Plant Sci 2017;8:1048.
  86. Di P, Yan Y, Wang P, Yan M, Wang Y-P, Huang L-Q. Integrative SMRT sequencing and ginsenoside profiling analysis provide insights into the biosynthesis of ginsenoside in Panax quinquefolium. Chin J Nat Med 2022;20:614-26.
  87. Zhang S, Wang G, Zuo T, Zhang X, Xu R, Zhu W, You J, Wang R, Chen P. Comparative transcriptome analysis of rhizome nodes and internodes in Panax. japonicus var. major reveals candidate genes involved in the biosynthesis of triterpenoid saponins. Genomics 2020;112:1112-9.
  88. Wei G, Yang F, Wei F, Zhang L, Gao Y, Qian J, Chen Z, Jia Z, Wang Y, Su H, et al. Metabolomes and transcriptomes revealed the saponin distribution in root tissues of Panax quinquefolius and Panax notoginseng. J Ginseng Res 2020;44:757-69.
  89. Wei G, Dong L, Yang J, Zhang L, Xu J, Yang F, Cheng R, Xu R, Chen S. Integrated metabolomic and transcriptomic analyses revealed the distribution of saponins in Panax notoginseng. Acta Pharm Sin B 2018;8:458-65.
  90. Ran Z, Chen X, Li R, Duan W, Zhang Y, Fang L, Guo L, Zhou J. Transcriptomics and metabolomics reveal the changes induced by arbuscular mycorrhizal fungi in Panax quinquefolius L. J Sci Food Agric 2023;103:4919-33.
  91. Deng L, Luo L, Li Y, Wang L, Zhang J, Zi B, Ye C, Liu Y, Huang H, Mei X, et al. Autotoxic ginsenoside stress induces changes in root exudates to recruit the beneficial Burkholderia strain B36 as revealed by transcriptomic and metabolomic approaches. J Agric Food Chem 2023;71:4536-49.