DOI QR코드

DOI QR Code

Electrochemical Detection of Hydroxychloroquine Sulphate Drug using CuO/GO Nanocomposite Modified Carbon Paste Electrode and its Photocatalytic Degradation

  • G. S. Shaila (Dept. of Chemistry, Rani Channamma University) ;
  • Dinesh Patil (Dept. of Chemistry, Rani Channamma University) ;
  • Naeemakhtar Momin (Dept. of Chemistry, Rani Channamma University) ;
  • J. Manjanna (Dept. of Chemistry, Rani Channamma University)
  • 투고 : 2023.07.06
  • 심사 : 2023.12.13
  • 발행 : 2024.02.29

초록

The antimalarial drug hydroxychloroquine sulphate (HCQ) has taken much attention during the first COVID-19 pandemic phase for the treatment of severe acute respiratory infection (SARI) patients. Hence it is interest to study the electrochemical properties and photocatalytic degradation of the HCQ drug. Copper oxide (CuO) nanoparticles, graphene oxide (GO) and CuO/GO NC (nanocomposite) modified carbon paste electrodes (MCPE) are used for the detection of HCQ in an aqueous medium. Electrochemical behaviour of HCQ (20 μM) was observed using CuO/MCPE, GO/MCPE and CuO/GO NC/MCPE in 0.1 M phosphate buffer at pH 7 with a scan rate of 20 to 120 mV s-1 by cyclic voltammetry (CV). Differential pulse voltammetry (DPV) of HCQ was performed for 0.6 to 16 μM HCQ. The CuO/GO NC/MCPE showed a reasonably good sensitivity of 0.33 to 0.44 μA μM cm-2 with LOD of 69 to 92 nM for HCQ. Furthermore, the CuO/GO NC was used as a catalyst for the photodegradation of HCQ by monitoring its UV-Vis absorption spectra. About 98% was degraded in about 34 min under visible light and after 4 cycles it was 87%. The improved photocatalytic activity may be attributed to decrease in bandgap energy and enhanced ability for the electrons to migrate. Thus, CuO/GO NC showed good results for both sensing and degradation applications as well as reproducibility.

키워드

과제정보

GSS greatly acknowledges RCU for providing Fellowship under SC/ST grant. Authors have benefitted from the facilities established under DST-FIST (SR/FST/CSI-273/2016 C), Ministry of Science & Technology, Govt. of India & VGST-CESEM(KSTePS/VGST/CESEM/2018-19/GRD No. 746), Govt. of Karnataka, India.

참고문헌

  1. A. K. Singh, A. Singh, A. Shaikh, R. Singh, and A. Misra, Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries, Diabetes Metab. Syndr. Clin. Res. Rev., 14(3), 241-246 (2020).
  2. K. A. Pastick, E. C. Okafor, F. Wang, S. M. Lofgren, C. P. Skipper, M. R. Nicol, M. F. Pullen, R. Rajasingham, E. G. McDonald, T. C. Lee, I. S. Schwartz, L. E. Kelly, S. A. Lother, O. Mitja, E. Letang, M. Abassi, and D. R. Boulware, Review: Hydroxychloroquine and chloroquine for treatment of SARS-CoV-2 (COVID-19), Open Forum Infect. Dis., 7(4), ofaa130 (2020).
  3. J. Geleris, Y. Sun, J. Platt, J. Zucker, M. Baldwin, G. Hripcsak, A. Labella, D. K. Manson, C. Kubin, R. G. Barr, M. E. Sobieszczyk, and N. W. Schluger, Observational study of hydroxychloroquine in hospitalized patients with Covid-19, N. Engl. J. Med., 382, 2411-2418 (2020).
  4. J. Liu, R. Cao, M. Xu, X. Wang, H. Zhang, H. Hu, Y. Li, Z. Hu, W. Zhong, and M. Wang, Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discov., 6, 6-9 (2020).
  5. P. Gautret, J.-C. Lagier, P. Parola, V. T. Hoang, L. Meddeb, M. Mailhe, B. Doudier, J. Courjon, V. Giordanengo, V. E. Vieira, H. Tissot Dupont, S. Honore, P. Colson, E. Chabriere, B. La Scola, J.-M. Rolain, P. Brouqui, and D. Raoult, Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int. J. Antimicrob Agents., 56(1), 105949 (2020).
  6. M. L. P. M. Arguelho, J. F. Andrade, and N. R. Stradiotto, Electrochemical study of hydroxychloroquine and its determination in plaquenil by differential pulse voltammetry, J. Pharm. Biomed. Anal., 32(2), 269-275 (2003).
  7. S. M. Ghoreishi, A. M. Attaran, A. M. Amin, and A. Khoobi, Multiwall carbon nanotube-modified electrode as a nanosensor for electrochemical studies and stripping voltammetric determination of an antimalarial drug, RSC Adv., 5(19), 14407-14415 (2015).
  8. E. A. Shippey, V. D. Wagler, and A. N. Collamer, Hydroxychloroquine: An old drug with new relevance, Cleve. Clin. J. Med., 85(6), 459-467 (2018).
  9. W. Wang, L. Liu, Y. Zhou, Q. Ye, X. Yang, J. Jiang, F. Gao, X. Tan, G. Zhang, Q. Fang, and Z. X. Xuan, Hydroxychloroquine enhances the antitumor effects of BC001 in gastric cancer, Int. J. Onco., 55, 405-414 (2019).
  10. F. Keshavarzi, Fungistatic effect of hydroxychloroquine, lessons from a case, Med. Mycol. Case Rep., 13, 17-18 (2016).
  11. M. P. Hage, M. R. Badri, and S. T. Azar, A favorable effect of hydroxychloroquine on glucose and lipid metabolism beyond its anti-inflammatory role, Ther. Adv. Endocrinol. Metab., 5(4), 77-85 (2014).
  12. T.-Y. Park, Y. Jang, W. Kim, J. Shin, H. T. Toh, C.-H. Kim, H. S. Yoon, P. Leblanc, and K.-S. Kim, Chloroquine modulates inflammatory autoimmune responses through Nurr1 in autoimmune diseases, Sci. Rep., 9, 15559 (2019).
  13. S. Bodur, S. Erarpat, O. T. Gunkara, and S. Bakirdere, Accurate and sensitive determination of hydroxychloroquinesulfate used on COVID-19 patients in human urine, serum and saliva samples by GC-MS, J. Pharm. Anal., 11(3), 278-283 (2021).
  14. S. A. Alkahtani, A. M. Mahmoud, M. H. Mahnashi, A. O. AlQarni, Y. S. A. Alqahtani, and M. M. El-Wekil, Facile one pot sonochemical synthesis of layered nanostructure of ZnS NPs/rGO nanosheets for simultaneous analysis of daclatasvir and hydroxychloroquine, Microchem. J., 164, 105972 (2021).
  15. M. A. E. Mhammedi, S. Saqrane, S. Lahrich, F. Laghrib, Y. E. Bouabi, A. Farahi, and M. Bakasse, Current trends in analytical methods for the determination of hydroxychloroquine and its application as treatment for COVID-19, Chemistry Select, 5(46), 14602-14612 (2020).
  16. W.-Y. Chen, Y.-T. Wu, H.-C. Lin, M.-I. Ieong, and B.-H. Lee, Impact of long-term parental exposure to Tamiflu metabolites on the development medaka offspring (Oryzias latipes), Environ. Pollut., 261, 114146 (2020).
  17. B. Tiwari, B. Sellamuthu, Y. Ouarda, P. Drogui, R. D. Tyagi, and G. Buelna, Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach, Bioresour.Technol., 224, 1-12 (2017).
  18. S. Dong, L. Cui, Y. Tian, L. Xia, Y. Wu, J. Yu, D. M. Bagley, J. Sun, and M. Fan, A novel and high-performance double Z-scheme photocatalyst ZnO-SnO2-Zn2SnO4 for effective removal of the biological toxicity of antibiotics, J. Hazard. Mater., 399, 123017 (2020).
  19. D. Dabic, S. Babic, and I. Skoric, The role of photodegradation in the environmental fate of hydroxychloroquine, Chemosphere, 230, 268-277 (2019).
  20. M. Wang, J. Li, H. Shi, D. Miao, Y. Yang, L. Qian, and S. Gao, Photolysis of atorvastatin in aquatic environment: Influencing factors, products, and pathways, Chemosphere, 212, 467-475 (2018).
  21. J. V. Kumar, R. Karthik, S.-M. Chen, V. Muthuraj, and C. Karuppiah, Fabrication of potato-like silver molybdate microstructures for photocatalytic degradation of chronic toxicity ciprofloxacin and highly selective electrochemical detection of H2O2, Sci. Rep., 6, 34149 (2016).
  22. K. Phiwdang, S. Suphankij, W. Mekprasart, and W. Pecharapa, Synthesis of CuO nanoparticles by precipitation method using different precursors, Energy Procedia, 34, 740-745 (2013).
  23. P. Gao and D. Liu, Hydrothermal preparation of nest-like CuO nanostructures for non-enzymatic amperometric detection of hydrogen peroxide, RSC Adv., 5(31), 24625-24634 (2015).
  24. W. Z. Teo, A. Ambrosi, and M. Pumera, Direct electrochemistry of copper oxide nanoparticles in alkaline media, Electrochem. Commun., 28, 51-53 (2013).
  25. C. P. Yang, Q. Wu, Z. W. Jiang, X. Wang, C. Z. Huang, and Y. F. Li, Cu vacancies enhanced photoelectrochemical activity of metal-organic gel-derived CuO for the detection of L-cysteine, Talanta, 228, 122261 (2021).
  26. Y. Y. Li, P. Kang, S. Q. Wang, Z. G. Liu, Y. X. Li, and Z. Guo, Ag nanoparticles anchored onto porous CuO nanobelts for the ultrasensitive electrochemical detection of dopamine in human serum, Sens. Actuators B: Chem., 327, 128878 (2021).
  27. O. Mahapatra, M. Bhagat, C. Gopalakrishnan, and K. D. Arunachalam, Ultrafine dispersed CuO nanoparticles and their antibacterial activity, J. Exp. Nanosci., 3(3), 185-193 (2008).
  28. L. Zhang, F. Yuan, X. Zhang, and L. Yang, Facile synthesis of flower like copper oxide and their application to hydrogen peroxide and nitrite sensing, Chem. Cent. J., 5, 75 (2011).
  29. B. Muthukutty, J. Ganesamurthi, S.-M. Chen, B. Arumugam, F. mao chang, S. M. Wabaidur, Z. A. ALOthman, T. Altalhi, and M. A. Ali, Construction of novel binary metal oxides: Copper oxide-tin oxide nanoparticles regulated for selective and nanomolar level electrochemical detection of anti-psychotic drug, Electrochim. Acta, 386, 138482 (2021).
  30. S. P. Ashokkumar, H. Vijeth, L. Yesappa, M. Vandana, S. Veeresh, H. Ganesh, Y. S. Nagaraju, and H. Devendrappa, Cyclic voltammetry, morphology and thermal studies of electrochemically synthesized PANI/CuO nanocomposite for supercapacitor application, AIP Conf. Proc., 2244(1), 080026 (2020).
  31. S.-D. Seo, Y.-H. Jin, S.-H. Lee, H.-W. Shim, and D.-W. Kim, Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes, Nanoscale Res. Lett., 6, 397 (2011).
  32. L. Dorner, C. Cancellieri, B. Rheingans, M. Walter, R. Kagi, P. Schmutz, M. V. Kovalenko, and L. P. H. Jeurgens, Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area, Sci. Rep., 9, 11758 (2019).
  33. P. Gao and D. Liu, Petal-like CuO nanostructures prepared by a simple wet chemical method, and their application to non-enzymatic amperometric determination of hydrogen peroxide, Microchim. Acta, 182, 1231-1239 (2015).
  34. K. Ganesan, V. K. Jothi, A. Natarajan, A. Rajaram, S. Ravichandran, and S. Ramalingam, Green synthesis of Copper oxide nanoparticles decorated with graphene oxide for anticancer activity and catalytic applications, Arab. J. Chem., 13(8), 6802-6814 (2020).
  35. S. Sehar, F. Sher, S. Zhang, U. Khalid, J. Sulejmanovic, and E. C. Lima, Thermodynamic and kinetic study of synthesised graphene oxide-CuO nanocomposites: A way forward to fuel additive and photocatalytic potentials, J. Mol. Liq., 313, 113494 (2020).
  36. B. Thakur, E. Bernalte, J. P. Smith, C. W. Foster, P. E. Linton, S. N. Sawant, and C. E. Banks, Utilising copper screen-printed electrodes (CuSPE) for the electroanalytical sensing of sulfide, Analyst, 141(4), 1233-1238 (2016).
  37. J. Chen, B. Yao, C. Li, and G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, 64, 225-229 (2013).
  38. F. Kargar, A. Bemani, M. H. Sayadi, and N. Ahmadpour, Synthesis of modified beta bismuth oxide by titanium oxide and highly efficient solar photocatalytic properties on hydroxychloroquine degradation and pathways, J. Photochem. Photobiol. A, 419, 113453 (2021).
  39. T. K. Ghosh, S. Gope, D. Rana, I. Roy, G. Sarkar, S. Sadhukhan, A. Bhattacharya, K. Pramanik, S. Chattopadhyay, M. Chakraborty, and D. Chattopadhyay, Physical and electrical characterization of reduced graphene oxide synthesized adopting green route, Bull. Mater. Sci., 39, 543-550 (2016).
  40. A. S. Sarkar and S. K. Pal, Exponentially distributed trap-controlled space charge limited conduction in graphene oxide films, J. Phys. D: Appl. Phys., 48(44), 445501 (2015).
  41. D. P. Volanti, D. Keyson, L. S. Cavalcante, A. Z. Simoes, M. R. Joya, E. Longo, J. A. Varela, P. S. Pizani, and A. G. Souza, Synthesis and characterization of CuO flowernanostructure processing by a domestic hydrothermal microwave, J. Alloys Compd., 459(1-2), 537-542 (2008).
  42. C. Ashok, K. V. Rao, and C. S. Chakra, Structural analysis of CuO nanomaterials prepared by novel microwave assisted method, J. Atoms Mol., 4(5), 803-806 (2014).
  43. M. I. Din, F. Arshad, A. Rani, A. Aihetasham, M. Mukhtar, and H. A. mehmood, Single step green synthesis of stable copper oxide nanoparticles as efficient photo catalyst material, J. Optoelectron. Biomed. Mater., 9(1), 41-48 (2017).
  44. P. K. Raul, S. Senapati, A. K. Sahoo, I. M. Umlong, R. R. Devi, A. J. Thakur, and V. Veer, CuO nanorods: A potential and efficient adsorbent in water purification, RSC Adv., 4, 40580-40587 (2014).
  45. M. S. Treasa and J. Premakumari, Characterisation and solubility studies of Quinine sulphate and Hydroxychloroquine sulphate inclusion complexes with α-cyclodextrin, IOSR J. Appl. Chem., 11(11), 24-34 (2018).
  46. P. P. Brisebois, R. Izquierdo, and M. Siaj, Room-temperature reduction of graphene oxide in water by metal chloride hydrates: A cleaner approach for the preparation of graphene@metal hybrids, Nanomaterials., 10(7), 1255. (2020)
  47. R. Hidayat, S. Wahyuningsih, and A. H. Ramelan, Simple synthesis of rGO (reduced graphene oxide) by thermal reduction of GO (graphene oxide), IOP Conf. Ser.: Mater. Sci. Eng., 858, 012009 (2020).
  48. A. N. F. Moraes, L. A. D. Silva, M. A. de Oliveira, E. M. de Oliveira, T. L. Nascimento, E. M. Lima, I. M. S. Torres, and D. G. A. Diniz, Compatibility study of hydroxychloroquine sulfate with pharmaceutical excipients using thermal and nonthermal techniques for the development of hard capsules, J. Therm. Anal. Calorim., 140, 2283-2292 (2020).
  49. S.-L. Cheng and M.-F. Chen, Fabrication, characterization, and kinetic study of vertical single-crystalline CuO nanowires on Si substrates, Nanoscale Res. Lett., 7, 119 (2012).
  50. S.-L. Cheng, M. F. Chen, and C. H. Chung, Synthesis and growth kinetics of large-scale CuO nanowires grown by oxidation of Cu films, The 4th IEEE International NanoElectronics Conference, Taoyuan, Taiwan, pp. 1-2 (2011).
  51. X. Zhu, H. Shi, J. Yin, H. Zhu, Y. Zhou, Y. Tang, P. Wu, and T. Lu, Facile preparation of CuO@SnO2 nanobelts as a high-capacity and long-life anode for lithium-ion batteries, RSC Adv., 4, 34417-34420 (2014).
  52. P. L. da Silva, R. P. Nippes, P. D. Macruz, F. L. Hegeto, and M. H. N. O. Scaliante, Photocatalytic degradation of hydroxychloroquine using ZnO supported on clinoptilolite zeolite, Water Sci. Technol., 84(3), 763-776 (2021).
  53. J. de Oliveira S. Silva, M. V. S. SantAnna, A. Gevaerd, J. B. S. Lima, M. D. S. Monteiro, S. W. M. M. Carvalho, and E. M. Sussuchi, A novel carbon nitride nanosheetsbased electrochemical sensor for determination of hydroxychloroquine in pharmaceutical formulation and synthetic urine samples, Eelectroanalysis, 33(10), 2152-2160. (2021)
  54. J. Ghasemi, A. Niazi, and R. Ghorbani, Determination of trace amounts of lorazepam by adsorptive cathodic differential pulse stripping method in pharmaceutical formulations and biological fluids, Analytical Letters, 39(6), 1159-1169 (2006).
  55. P. A. Pushpanjali, J. G. Manjunatha, N. Hareesah, T. Girish, A. A. Al-Kahtnai, M. Tighezza, and N. Ataollahi, Electrocatalytic determination of hydroxychloroquine using sodium dodecyl sulphate modified carbon nanotube paste electrode, Top. Catal., (2022). https://doi.org/10.1007/s11244-022-01568-8
  56. J. Ning, Q. He, X. Luo, M. Wang, D. Liu, J. Wang, J. Liu, and G. Li, Rapid and sensitive determination of vanillin based on a glassy carbon electrode modified with Cu2O-electrochemically reduced graphene oxide nanocomposite film, Sensors, 18(9), 2762 (2018).
  57. Y. Zheng, A. Wang, H. Lin, L. Fu, and W. Cai, A sensitive electrochemical sensor for direct phoxim detection based on an electrodeposited reduced graphene oxidegold nanocomposite, RSC Adv., 5(20), 15425-15430 (2015).
  58. H. Zhang, L. Cheng, H. Shang, W. Zhang, and A. Zhang, A novel electrochemical sensor based on reduced graphene oxide-TiO2 nanocomposites with high selectivity for the determination of hydroxychloroquine, Russ. J. Electrochem., 57, 872-884 (2021).
  59. H. M. Mahnashi, A. M. Mahmoud, A. S. Alkahtani, and M. M. El-Wekil, Simultaneous electrochemical detection of azithromycin and hydroxychloroquine based on VS2 QDs embedded N, S @graphene aerogel/cCNTs 3D nanostructure, Microchem. J., 163, 105925 (2021).
  60. D. M. de Ara, S. M. Paiva, J. M. M. Henrique, C. A. Martinez-Huitle, and E. V. D. Santos, Green composite sensor for monitoring hydroxychloroquine in different water matrix, Materials, 14(17), 4990 (2021).
  61. P. Balasubramanian, T. S. T. Balamurugan, C. Shen- Ming, C. Tse-Wei, G. Sharmila, and Y. Ming-Chin, Onestep green synthesis of colloidal gold nano particles?: A potential electrocatalyst towards high sensitive electrochemical detection of methyl parathion in food samples, J. Taiwan Inst. Chem. Eng., 87, 83-90 (2018).
  62. F. Peng, Y. Sun, Y. Lu, W. Yu, M. Ge, J. Shi, R. Cong, J. Hao, and N. Dai, Studies on sensing properties and mechanism of CuO nanoparticles to H2S Gas, Nanomaterials, 10(4), 774 (2020).
  63. S. Reddy, B. E. K. Swamy, and H. Jayadevappa, CuO nanoparticle sensor for the electrochemical determination of dopamine, Electrochim. Acta, 61, 78-86 (2012).
  64. B. Avinash, C. R. Ravikumar, M. R. A. Kumar, H. P. Nagaswarupa, M. S. Santosh, A. S. Bhatt, and D. Kuznetsov, Nano CuO: Electrochemical sensor for the determination of paracetamol and d-glucose, J. Phys. Chem. Solids, 134, 193-200 (2019).
  65. J. Zoubir, I. Bakas, S. Qourzal, M. Tamimi, and A. Assabbane, Electrochemical sensor based on a ZnO-doped graphitized carbon for the electrocatalytic detection of the antibiotic hydroxychloroquine. Application: tap water and human urine, J. Appl. Electrochem., 53, 1279-1294 (2023).
  66. M. S. Carvalho, R. G. Rocha, L. V. de Faria, E. M. Richter, L. M. F. Dantas, I. S. da Silva, and R. A. A. Munoz, Additively manufactured electrodes for the electrochemical detection of hydroxychloroquine, Talanta, 250, 123727 (2020).
  67. W. Wang, J. C. Yu, D. Xia, P. K. Wong, and Y. Li, Graphene and g-C3N4 nanosheets cowrapped elemental α-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light, Environ. Sci., Technol., 47(15), 8724-8732 (2013).
  68. J. Yu, J. Jin, B. Cheng, and M. Jaroniec, A noble metalfree reduced graphene oxide-cds nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel, J. Mater. Chem. A, 2(10), 3407-3416 (2014).
  69. M. Kaur, A. Umar, S. K. Mehta, and S. K. Kansal, Reduced graphene oxide-CdS heterostructure: An efficient fluorescent probe for the sensing of Ag(I) and sunset yellow and a visible-light responsive photocatalyst for the degradation of levofloxacin drug in aqueous phase, Appl. Catal. B, 245, 143-158 (2019).
  70. T. S. Anirudhan and J. R. Deepa, Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions, J. Colloid Interface Sci., 490, 343-356 (2017).
  71. B. Saini and G. Bansal, Characterization of four new photodegradation products of hydroxychloroquine through LC-PDA, ESI-MSn and LC-MS-TOF studies, J. Pharm. Biomed. Anal., 84, 224-231 (2013).
  72. M. C. Rath, S. J. Keny, H. P. Upadhyaya, S. Adhikari, Free radical induced degradation and computational studies of hydroxychloroquine in aqueous solution, Radiat. Phys. Chem., 206, 110785 (2023).