DOI QR코드

DOI QR Code

Analysis of Optimal Index for Heat Morbidity

온열질환자 예측을 위한 최적의 지표 분석

  • Sanghyuck Kim (Interdisciplinary program in Landscape Architecture, Seoul National University) ;
  • Minju Song (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Seokhwan Yun (National Institute for Environmental Studies) ;
  • Dongkun Lee (Department of Landscape Architecture, Seoul National University)
  • 김상혁 (서울대학교 환경대학원 협동과정조경학) ;
  • 송민주 (고려대학교 환경생태공학부) ;
  • 윤석환 (일본 국립환경연구소) ;
  • 이동근 (서울대학교 농업생명과학대학 조경지역시스템공학부)
  • Received : 2023.11.25
  • Accepted : 2024.01.15
  • Published : 2024.02.29

Abstract

The purpose of this study is to select and predict optimal heatwave indices for describing and predicting heat-related illnesses. Regression analysis was conducted using Heat-related illness surveillance system data for a number of heat-related illnesses and meteorological data from the Korea Meteorological Administration's Automatic Weather Station (AWS) for the period from 2021 to 2023. Daily average temperature, daily maximum temperature, daily average Wet Bulb Globe Temperature (WBGT), and daily maximum WBGT values were calculated and analyzed. The results indicated that among the four indicators, the daily maximum WBGT showed the highest suitability with an R2 value of 0.81 and RMSE of 0.98, with a threshold of 29.94 Celsius. During the entire analysis period, there were a total of 91 days exceeding this threshold, resulting in 339 cases of heat-related illnesses. Predictions of heat-related illness cases from 2021 to 2023 using the regression equation for daily maximum WBGT showed an accuracy with less than 10 cases of error annually, demonstrating a high level of precision. Through continuous research and refinement of data and analysis methods, it is anticipated that this approach could contribute to predicting and mitigating the impact of heatwaves.

본 연구의 목적은 온열질환자를 설명, 예측하기 위한 최적의 폭염 관련 지표를 선정하고 예측하여 실효성을 확인하는 것이다. 2021년부터 2023년까지의 온열질환 응급실감시체계 데이터와 기상청 AWS 데이터를 기반으로 일 평균 기온, 일 최고 기온, 일 평균 WBGT, 일 최고 WBGT 값을 계산하여 회귀분석을 진행하였다. 분석 결과 네 가지 지표 중 일 최고 WBGT가 R2 값 0.81, RMSE 0.98로 가장 적합한 지표로 나타났으며 그 임계값은 29.94도로 나타났다. 전체 분석 기간 중 해당 임계값을 초과하는 날은 총 91일이었으며 이 때 발생한 환자수는 339명으로 나타났다. 일 최고 WBGT의 회귀식을 통해 2021년부터 2023년까지의 온열질환자 수를 예측한 결과 매년 10명 미만의 오차를 보여 정확성이 상당히 높은 것을 확인할 수 있었다. 지속적인 연구를 통해 데이터 및 분석 방법을 고도화한다면, 폭염 피해를 예측 및 저감하는데 도움이 될 수 있을 것이다.

Keywords

Acknowledgement

본 성과는 환경부의 재원을 지원받아 한국환경산업기술원 "신기후체제 대응 환경기술개발사업"의 연구 개발을 통해 창출되었습니다(2022003570004).

References

  1. Chen X, Li N, Liu J, Zhang Z, Liu Y. 2019. Global heat wave hazard considering humidity effects during the 21st century. International Journal of Environmental Research and Public Health 16(9): 1513.
  2. Guo Y, Barnett AG, Pan X, Yu W, Tong S. 2011. The impact of temperature on mortality in Tianjin, China: a case-crossover design with a distributed lag nonlinear model. Environment Health Perspectives 119(12): 1719-1725. https://doi.org/10.1289/ehp.1103598
  3. Heo S, Bell ML, Lee JT. 2019. Comparison of health risks by heat wave definition: Applicability of wet-bulb globe temperature for heat wave criteria. Environmental Research 168: 158-170. https://doi.org/10.1016/j.envres.2018.09.032
  4. Jeong D, Lim SH, Kim DW, Lee WS. 2016. The Effects of Climate Elements on Heat-related Illness in South Korea. Journal of Climate Change Research 7(2): 205-215. [Korean Literature] https://doi.org/10.15531/ksccr.2016.7.2.205
  5. Kakaei H, Omidi F, Ghasemi R, Sabet MR, Golbabaei F. 2019. Changes of WBGT as a heat stress index over the time: A systematic review and meta-analysis. Urban Climate 27: 284-292. https://doi.org/10.1016/j.uclim.2018.12.009
  6. Kim DW, Chung JH, Lee JS, Lee JS. 2014. Characteristics of heat wave mortality in Korea. Atmosphere 24(2): 225-234. [Korean Literature] https://doi.org/10.14191/ATMOS.2014.24.2.225
  7. Kim J, Lee DG, Park IS, Choi BC, Kim JS. 2006. Influences of heat waves on daily mortality in South Korea. Atmosphere 16(4): 269-278. [Korean Literature]
  8. Kim JU, Sang J, Kim MK, Byun YH, Kim DH, Kim TJ. 2022. Future climate projection in South Korea using the high-resolution SSP scenarios based on statistical downscaling. Journal of Climate Research 17: 89-106. [Korean Literature] https://doi.org/10.14383/CRI.2022.17.2.89
  9. Lee JS, Kim KR, Cho C, Kang M, Ha JC, Kim DS. 2019. Evaluating the accuracies of the WBGT estimation models and their onsite applicability in Korea. Journal of the Korean Society of Hazard Mitigation 19(4): 53-63. [Korean Literature] https://doi.org/10.9798/KOSHAM.2019.19.4.53
  10. Lim YH, Kim H, Hong YC. 2013. Variation in mortality of ischemic and hemorrhagic strokes in relation to high temperature. International Journal of Biometeorology, 57(1), 145-153. https://doi.org/10.1007/s00484-012-0542-x
  11. Lim YH, Lee HJ, Hong YT. 2019. Attributable all-cause mortality during heatwaves in South Korea, 2006-2018. Public Health Weekly Report 12(37): 1435-1441. [Korean Literature]
  12. Ma C, Honda Y, Dang TN. 2018. Comparison of wet-bulb globe temperature (WBGT) and mean temperature for assessment of heat-related mortality evidence from 47 Japanese prefectures. Japanese Journal of Health and Human Ecology 84(2): 52-72.
  13. Mora C, Cunsell CWW, Bielecki CR, Louis LV. 2017. Twenty-seven ways a heat wave can kill you: deadly heat in the era of climate change. Circ Cardiovasc Qual Outcomes 10(11): e004233
  14. Park J, Chae Y. 2020. Analysis of heat-related illness and excess mortality by heat waves in South Korea in 2018. Journal of the Korean Geographical Society 55(4): 391-408. [Korean Literature] https://doi.org/10.22776/KGS.2020.55.4.391
  15. Park JK, Jung WS, Kim EB. 2008. A study on the influence of extreme heat on daily mortality. Journal of Korean Society for Atmospheric Environment 24(5): 523-537. [Korean Literature] https://doi.org/10.5572/KOSAE.2008.24.5.523
  16. The Government of the Republic of Korea. 2023. The Republic of Korea's Adaptation Communication. [Korean Literature]
  17. Watanabe H, Honda Y, Oka K, Hashizume M, Tobias A, Kim Y. 2022. Comparison of heat-related mortality estimated using ambient temperature and wet-bulb globe temperature in Japan: Supporting evidence for heat health warning system. In ISEE Conference Abstracts (Vol. 2022, No. 1).