DOI QR코드

DOI QR Code

Revolutionizing Energy Storage: Exploring Processing Approaches and Electrochemical Performance of Metal-Organic Frameworks (MOFs) and Their Hybrids

  • Received : 2023.07.11
  • Accepted : 2023.08.25
  • Published : 2024.02.29

Abstract

The text highlights the growing need for eco-friendly energy storage and the potential of metal-organic frameworks (MOFs) to address this demand. Despite their promise, challenges in MOF-based energy storage include stability, reproducible synthesis, cost-effectiveness, and scalability. Recent progress in supercapacitor materials, particularly over the last decade, has aimed to overcome these challenges. The review focuses on the morphological characteristics and synthesis methods of MOFs used in supercapacitors to achieve improved electrochemical performance. Various types of MOFs, including monometallic, binary, and tri-metallic compositions, as well as derivatives like hybrid nanostructures, sulfides, phosphides, and carbon composites, are explored for their energy storage potential. The review emphasizes the quest for superior electrochemical performance and stability with MOF-based materials. By analyzing recent research, the review underscores the potential of MOF-based supercapacitors to meet the increasing demands for high power and energy density solutions in the field of energy storage.

Keywords

References

  1. N. Abas, A. Kalair, and N. Khan, Futures, 2015, 69, 31-49.  https://doi.org/10.1016/j.futures.2015.03.003
  2. M. Hook and X. Tang, Energy Policy, 2013, 52, 797-809. 
  3. S. R. Chia, S. Nomanbhay, M. Y. Ong, A. H. B. Shamsuddin, K. W. Chew, and P. L. Show, Fuel, 2022, 314, 123137. 
  4. M. A. A. M. Abdah, H. T. A. Awan, M. Mehar, M. N. Mustafa, R. Walvekar, M. W. Alam, M. Khalid, R. Umapathi, and V. Chaudhary, J. Energy Storage, 2023, 63, 106942. 
  5. G. Zhang, Y. Ge, Z. Ye, and M. Al-Bahrani, J. Energy Storage, 2023, 57, 106160. 
  6. M. M. Hasan and A. H. Chowdhury, J. Energy Storage, 2023, 58, 106327. 
  7. M. M. Rashidi, I. Mahariq, N. Murshid, S. Wongwises, O. Mahian, and M. A. Nazari, Alex. Eng. J., 2022, 61(12), 12977-12989.  https://doi.org/10.1016/j.aej.2022.06.056
  8. A. Chaudhuri, R. Datta, M. P. Kumar, J. P. Davim, and S. Pramanik, Materials, 2022, 15(3), 1232. 
  9. A. Rahman, O. Farrok, and M. M. Haque, Renew. Sustain. Energy Rev., 2022, 161, 112279. 
  10. A. K. Rai, N. H. A. Makishah, Z. Wen, G. Gupta, S. Pandit, and R. Prasad, Fermentation, 2022, 8(4), 161. 
  11. C. C. Claudio, M. T. B. Perazzini, and H. Perazzini, Renew. Energy, 2022, 181, 304-316.  https://doi.org/10.1016/j.renene.2021.09.054
  12. J. Twitchell, K. DeSomber, and D. Bhatnagar, J. Energy Storage, 2023, 60, 105787. 
  13. C. M. S. Kumar, S. Singh, M. K. Gupta, Y. M. Nimdeo, R. Raushan, A. V. Deorankar, T. M. A. Kumar, P. K. Rout, C. S. Chanotiya, V. D. Pakhale, and A. D. Nannaware, Sustain. Energy Technol. Assess., 2023, 55, 102905. 
  14. A. Ari, A. K. Bohre, P. Chaturvedi, M. L. Kolhe, and S. N. Singh, Techno-economic analysis of hybrid renewable energy systems-A review with case study, in Planning of Hybrid Renewable Energy Systems, Electric Vehicles and Microgrid. Energy Systems in Electrical Engineering, Springer, Singapore, 2022, 227-264. 
  15. G. Willems, Unraveling Flashback Phenomena of Turbulent premixed Hydrogen-Natural Gas-Air Flames, Master Thesis, Delft University of Technology, 2022. 
  16. A. K. Barik, S. Jaiswal, and D. C. Das, Int. J. Sustain. Energy, 2022, 41(4), 308-322.  https://doi.org/10.1080/14786451.2021.1910698
  17. E. K. Stigka, J. A. Paravantis, and G. K. Mihalakakou, Renew. Sustain. Energy Rev., 2014, 32, 100-106.  https://doi.org/10.1016/j.rser.2013.12.026
  18. J. Geng, S. Gao, X. Sun, Z. Liu, F. Zhao, and H. Hao, Energy, 2022, 253, 124159. 
  19. K. Mallon and F. Assadian, Energies, 2022, 15(2), 600. 
  20. S. Koohi-Fayegh and M. A. Rosen, J. Energy Storage, 2020, 27, 101047. 
  21. I. E. Atawi, A. Q. Al-Shetwi, A. M. Magableh, and O. H. Albalawi, Batteries, 2022, 9(1), 29. 
  22. S. Prabhu, M. Maruthapandi, A. Durairaj, S. A. Kumar, J. H. T. Luong, R. Ramesh, and A. Gedanken, ACS Appl. Energy Mater., 2023, 6(3), 1321-1331.  https://doi.org/10.1021/acsaem.2c03067
  23. M. Horn, J. MacLeod, M. Liu, J. Webb, and N. Motta, Econ. Anal. Policy, 2019, 61, 93-103.  https://doi.org/10.1016/j.eap.2018.08.003
  24. J. Liu, J.-G. Zhang, Z. Yang, J. P. Lemmon, C. Imhoff, G. L. Graff, L. Li, J. Hu, C. Wang, J. Xiao, G. Xia, V. V. Viswanathan, S. Baskaran, V. Sprenkle, X. Li, Y. Shao, and B. Schwenzer, Adv. Funct. Mater., 2013, 23(8), 929-946.  https://doi.org/10.1002/adfm.201200690
  25. W. Cao, J. Zhang, and H. Li, Energy Storage Mater., 2020, 26, 46-55. 
  26. X. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle, and W. Wang, Adv. Mater., 2014, 26(45), 7649-7653.  https://doi.org/10.1002/adma.201403746
  27. Y. Wu and C. Cao, Sci. China Mater., 2018, 61, 1517-1526.  https://doi.org/10.1007/s40843-018-9290-y
  28. J. Ni, Y. Huang, and L. Gao, J. Power Sources, 2013, 223, 306-311.  https://doi.org/10.1016/j.jpowsour.2012.09.047
  29. M. Gao, Z. Wnag, D. G. Lek, and Q. Wang, Nano Research Energy, 2023, 2, e9120045. 
  30. Y. Huang, L. Quan, T. Liu, Q. Chen, D. Cai, and H. Zhan, Nanoscale, 2018, 10, 14171-14181.  https://doi.org/10.1039/C8NR03919D
  31. G. Xu, P. Nie, H. Dou, B. Ding, L. Li, and X. Zhang, Mater. Today, 2017, 20(4), 191-209.  https://doi.org/10.1016/j.mattod.2016.10.003
  32. Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, and X. Sun, Energy Storage Mater., 2016, 2, 35-62. 
  33. F. Figueira and F. A. A. Paz, C, 2021, 7(2), 47. 
  34. J. Zhou and B. Wang, Chem. Soc. Rev., 2017, 46, 6927-6945.  https://doi.org/10.1039/C7CS00283A
  35. J. Hu, X. Yuan, C. Wang, X. Shao, B. Yang, A. A. Razzaq, X. Zhao, Y. Lian, Z. Deng, M. Chen, and Y. Peng, Small, 2020, 16(24), 2000755. 
  36. M. F. Khan, M. A. Marwat, Abdullah, S. S. Shah, M. R. A. Karim, M. A. Aziz, Z. U. Din, S. Ali, and K. M. Adam, Sep. Purif. Technol., 2023, 310, 123101. 
  37. L. Sun, C. H. Hendon, S. S. Park, Y. Tulchinsky, R. Wan, F. Wang, A. Walsh, and M. Dinca, Chem. Sci., 2017, 8, 4450-4457.  https://doi.org/10.1039/C7SC00647K
  38. C. Li, L. Zhang, J. Chen, X. Li, J. Sun, J. Zhu, X. Wang, and Y. Fu, Nanoscale, 2021, 13, 485-509.  https://doi.org/10.1039/D0NR06396G
  39. H. Babaei, A. J. H. McGaughey, and C. E. Wilmer, Chem. Sci., 2017, 8, 583-589.  https://doi.org/10.1039/C6SC03704F
  40. J. Ren, Y. Huang, H. Zhu, B. Zhang, H. Zhu, S. Shen, G. Tan, F. Wu, H. He, S. Lan, X. Xia, and Q. Liu, Carbon Energy, 2020, 2(2), 176-202.  https://doi.org/10.1002/cey2.44
  41. K. O. Otun, S. Zong, D. Hildebrandt, and X. Liu, J. Phys. Chem. Solids, 2022, 167, 110779. 
  42. B. Li, H.-M. Wen, W. Zhou, and B. Chen, J. Phys. Chem. Lett., 2014, 5(20), 3468-3479.  https://doi.org/10.1021/jz501586e
  43. A. F. Sahayaraj, H. J. Prabu, J. Maniraj, M. Kannan, M. Bharathi, P. Diwahar, and J. Salamon, J. Inorg. Organomet. Polym., 2023, 33, 1757-1781. 
  44. Y. Peng, J. Xu, J. Ma, Y. Bai, S. Cao, S. Zhang, and H. Pang, Adv. Colloid Inferface Sci., 2022, 307, 102732. 
  45. G. Xu, C. Zhu, and G. Gao, Small, 2022, 18(44), 2203140. 
  46. M. A. Marwat, B. Xie, M. Ashtar, Y. Zhu, P. Fan, and H. Zhang, Ceram. Int., 2018, 44(6), 6843-6850.  https://doi.org/10.1016/j.ceramint.2018.01.108
  47. B. Zhang, Y. Zheng, T. Ma, C. Yang, Y. Peng, Z. Zhou, M. Zhou, S. Li, Y. Wang, and C. Cheng, Adv. Mater., 2021, 33(17), 2006042. 
  48. A. C. McKinlay, R. E. Morris, P. Horcajada, G. Ferey, R. Gref, P. Couvreur, and C. Serre, Angew. Chem. Int. Ed., 2010, 49(36), 6260-6266.  https://doi.org/10.1002/anie.201000048
  49. S. Kumar, S. Jain, M. Nehra, N. Dilbaghi, G. Marrazza, and K.-H. Kim, Coord. Chem. Rev., 2020, 420, 213407. 
  50. T. Rasheed, M. Bilal, A. A. Hassan, F. Nabeel, R. N. Bharagava, L. F. R. Ferreira, H. N. Tran, and H. M. N. Iqbal, Environ. Res., 2020, 185, 109436. 
  51. D. Liu, W. Gu, L. Zhou, L. Wang, J. Zhang, Y. Liu, and J. Lei, Chem. Eng. J., 2022, 427, 131503. 
  52. I. Ihsanullah, Curr. Opin. Environ. Sci. Health, 2022, 100335. 
  53. A. Elrasheedy, N. Nady, M. Bassyouni, and A. El-Shazly, Membranes, 2019, 9(7), 88. 
  54. L. Du, Biotechnol. J., 2021, 16(2), 1900424. 
  55. A. Bieniek, A. P. Terzyk, M. Wisniewski, K. Roszek, P. Kowalczyk, L. Sarkisov, S. Keskin, and K. Kaneko, Prog. Mater. Sci., 2021, 117, 100743. 
  56. H. Shu, T. Lai, J. Ren, X. Cui, X. Tian, Z. Yang, X. Xiao, and Y. Wang, Nanotechnology, 2022, 33, 135502. 
  57. T. Yao, H. Wang, Y. Qin, J.-W. Shi, and Y. Cheng, Compos. B: Eng., 2023, 253, 110557. 
  58. M. I. da Silva, I. R. Machado, H. E. Toma, K. Araki, L. Angnes, and J. M. Goncalves, J. Mater. Chem. A, 2022, 10 430-474.  https://doi.org/10.1039/D1TA05927K
  59. J.-K. Sun and Q. Xu, Energy Environ. Sci., 2014, 7, 2071-2100. 
  60. S.-L. Li and Q. Xu, Energy Environ. Sci., 2013, 6, 1656-1683. 
  61. W. K. Chee, H. N. Lim, Z. Zainal, N. M. Huang, I. Harrison, and Y. Andou, J. Phys. Chem. C, 2016, 120(8), 4153-4172.  https://doi.org/10.1021/acs.jpcc.5b10187
  62. Q. Ke and J. Wang, J. Materiomics, 2016, 2(1), 37-54.  https://doi.org/10.1016/j.jmat.2016.01.001
  63. A. A. Kalam, S. Park, Y. Seo, and J. Bae, Bull. Korean Chem. Soc., 2015, 36(8), 2111-2115.  https://doi.org/10.1002/bkcs.10414
  64. E. V. Lobiak, L. G. Bulusheva, E. O. Fedorovskaya, Y. V. Shubin, P. E. Plyusnin, P. Lonchambon, B. V. Senkovskiy, Z. R. Ismagilov, E. Flahaut, and A. V. Okotrub, Beilstein J. Nanotechnol., 2017, 8, 2669-2679. 
  65. F. J. Claire, M. A. Solomos, J. Kim, G. Wang, M. A. Siegler, M. F. Crommie, and T. J. Kempa, Nat. Commun., 2020, 11, 5524. 
  66. J. Cao, Y. Li, L. Wang, Y. Qiao, J. Li, L. Zhu, S. Zhang, X. Yan, and H. Xie, J. Alloys Compd., 2023, 936, 168262. 
  67. L. Legenstein, S. Rodriguez-Hermida, V. Rubio-Gimenez, T. Stassin, S. Hofer, M. P. Kainz, M. Fratschko, F. Carraro, P. Falcaro, R. Ameloot, and R. Resel, Adv. Mater. Interfaces, 2023, 10(12), 2202461. 
  68. Y. Ren and Y. Xu, Chem. Commun., 2023, 59, 6475-6494. 
  69. Y. K. Park, S. B. Choi, H. J. Nam, D.-Y. Jung, H. C. Ahn, K. Choi, H. Furukawa, and J. Kim, Chem. Commun., 2010, 46, 3086-3088.  https://doi.org/10.1039/c000775g
  70. H. Hayashi and Y. Hakuta, Materials, 2010, 3(7), 3794-3817.  https://doi.org/10.3390/ma3073794
  71. H. Jiang, Q. Wang, H. Wang, Y. Chen, and M. Zhang, Catal. Commun., 2016, 80, 24-27.  https://doi.org/10.1016/j.catcom.2016.03.013
  72. Y.-R. Lee, J. Kim, and W.-S. Ahn, Korean J. Chem. Eng., 2013, 30, 1667-1680.  https://doi.org/10.1007/s11814-013-0140-6
  73. M. Diaz-Garcia and M. Sanchez-Sanchez, Microporous Mesoporous Mater., 2014, 190, 248-254. 
  74. D.-P. Qin, K.-R. Huang, G.-M. Huang, and L.-S. Cui, J. Mol. Struct., 2023, 1280, 135000. 
  75. A. K. Hosseini, Y. Pourshirzad, and A. Tadjarodi, J. Solid State Chem., 2023, 317, 123676. 
  76. W. Zhang, Z. Shahnavaz, X. Yan, X. Huang, S. Wu, H. Chen, J. Pan, T. Li, and J. Wang, Inorg. Chem., 2022, 61(38), 15287-15301.  https://doi.org/10.1021/acs.inorgchem.2c02916
  77. B. D. de Grenu, S. Munoz-Pina, R. de los Reyes, M. Benitez, J. E. Haskouri, P. Amoros, and J. V. Ros-Lis, ChemSusChem, 2023, 16(12), e202300123. 
  78. Y.-T. Hsieh and W.-R. Liu, Ceram. Int., 2023, 49(19), 32164-32171.  https://doi.org/10.1016/j.ceramint.2023.07.187
  79. L. Hu, L. Chen, Y. Fang, A. Wang, C. Chen, and Z. Yan, Microporous Mesoporous Mater., 2018, 268, 207-215.  https://doi.org/10.1016/j.micromeso.2018.04.039
  80. T. Zhao, S.-H. Li, L. Shen, Y. Wang, and X.-Y. Yang, Inorg. Chem. Commun., 2018, 96, 47-51.  https://doi.org/10.1016/j.inoche.2018.07.036
  81. W. Li, Z. Li, F. Yang, X. Fang, and B. Tang, ACS Appl. Mater. Interfaces, 2017, 9(40), 35030-35039.  https://doi.org/10.1021/acsami.7b11620
  82. A. Laybourn, J. Katrib, R. S. Ferrari-John, C. G. Morris, S. Yang, O. Udoudo, T. L. Easun, C. Dodds, N. R. Champness, S. W. Kingman, and M. Schroder, J. Mater. Chem. A, 2017, 5, 7333-7338.  https://doi.org/10.1039/C7TA01493G
  83. N. A. Khan, I. J. Kang, H. Y. Seok, and S. H. Jhung, Chem. Eng. J., 2011, 166(3), 1152-1157.  https://doi.org/10.1016/j.cej.2010.11.098
  84. P. T. Phan, J. Hong, N. Tran, and T. H. Le, Nanomaterials, 2023, 13(2), 352. 
  85. J. Wang, M. Rao, C. Ye, Y. Qiu, W. Su, S. Zheng, J. Fan, S. Cai, and W.-G. Zhang, RSC Adv., 2020, 10, 4621-4629.  https://doi.org/10.1039/C9RA09738D
  86. Y. Ning, X. Lou, C. Li, X. Hu, and B. Hu, Chem. Eur. J., 2017, 23(63), 15984-15990.  https://doi.org/10.1002/chem.201703077
  87. C. Li, X. Hu, W. Tong, W. Yan, X. Lou, M. Shen, and B. Hu, ACS Appl. Mater. Interfaces, 2017, 9(35), 29829-29838.  https://doi.org/10.1021/acsami.7b09363
  88. H. Kennaz, A. Harat, O. Guellati, D. Y. Momodu, F. Barzegar, J. K. Dangbenon, N. Manyala, and M. Guerioune, J. Solid State Electrochem., 2018, 22, 835-847.  https://doi.org/10.1007/s10008-017-3813-y
  89. J.-J. Li, M.-C. Liu, L.-B. Kong, D. Wang, Y.-M. Hu, W. Han, and L. Kang, RSC Adv., 2015, 5, 41721-41728.  https://doi.org/10.1039/C5RA06050H
  90. N. Liu, X. Liu, and J. Pan, J. Colloid Interface Sci., 2022, 606, 1364-1373.  https://doi.org/10.1016/j.jcis.2021.08.105
  91. S. Opelt, S. Turk, E. Dietzsch, A. Henschel, S. Kaskel, and E. Klemm, Catal. Commun., 2008, 9(6), 1286-1290.  https://doi.org/10.1016/j.catcom.2007.11.019
  92. X. Chen, X. Chen, E. Yu, S. Cai, H. Jia, J. Chen, and P. Liang, Chem. Eng. J., 2018, 344, 469-479.  https://doi.org/10.1016/j.cej.2018.03.091
  93. R. Rajak, M. Saraf, P. Kumar, K. Natarajan, and S. M. Mobin, Inorg. Chem., 2021, 60(22), 16986-16995.  https://doi.org/10.1021/acs.inorgchem.1c02062
  94. W. Xie, Y. Wang, J. Zhou, M. Zhang, J. Yu, C. Zhu, and J. Xu, Appl. Surface Sci., 2020, 534, 147584. 
  95. T. K. Ghosh and G. R. Rao, Dalton Trans., 2023, 52, 5943-5955. 
  96. R. Wu, D. P. Wang, X. Rui, B. Liu, K. Zhou, A. W. K. Law, Q. Yan, J. Wei, and Z. Chen, Adv. Mater., 2015, 27(19), 3038-3044.  https://doi.org/10.1002/adma.201500783
  97. B. Y. Guan and X. W. Lou, Small Methods, 2017, 1(7), 1700158. 
  98. B. Y. Guan, L. Yu, and X. W. Lou, Energy Environ. Sci., 2016, 9, 3092-3096. 
  99. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, J. Phys. Chem. C, 2009, 113(30), 13103-13107.  https://doi.org/10.1021/jp902214f
  100. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, Science, 2011, 332, 1537-1541.  https://doi.org/10.1126/science.1200770
  101. M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Nano Lett., 2009, 9(5), 1872-1876.  https://doi.org/10.1021/nl8038579
  102. Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, and G. Yushin, Acs Nano, 2010, 4(3), 1337-1344.  https://doi.org/10.1021/nn901825y
  103. H. Nishihara, H. Itoi, T. Kogure, P.-X. Hou, H. Touhara, F. Okino, and T. Kyotani, Chem. Eur. J., 2009, 15(21), 5355-5363.  https://doi.org/10.1002/chem.200802406
  104. T. P. Mofokeng, A. K. Ipadeola, Z. N. Tetana, and K. I. Ozoemena, ACS Omega, 2020, 5(32), 20461-20472.  https://doi.org/10.1021/acsomega.0c02563
  105. Y. Li, Y. Xu, Y. Liu, and H. Pang, Small, 2019, 15(36), 1902463. 
  106. D. Y. Lee, S. J. Yoon, N. K. Shrestha, S.-H. Lee, H. Ahn, and S.-H. Han, Mciroporous Mesoporous Mater., 2011, 153, 163-165. 
  107. D. Y. Lee, D. V. Shinde, E.-K. Kim, W. Lee, I.-W. Oh, N. K. Shrestha, J. K. Lee, and S.-H. Han, Microporous Mesoporous Mater., 2013, 171, 53-57.  https://doi.org/10.1016/j.micromeso.2012.12.039
  108. M. Du, M. Chen, X.-G. Yang, J. Wen, X. Wang, S.-M. Fang, and C.-S. Liu, J. Mater. Chem. A, 2014, 2, 9828-9834.  https://doi.org/10.1039/C4TA00963K
  109. Y. Pan, D. Gao, Y. Dang, P. Xu, D. Han, C. Liu, Y. Wei, and Y. Yang, Inorg. Chem. Front., 2022, 9, 5982-5993.  https://doi.org/10.1039/D2QI01700H
  110. R. Diaz, M. G. Orcajo, J. A. Botas, G. Calleja, and J. Palma, Mater. Lett., 2012, 68, 126-128.  https://doi.org/10.1016/j.matlet.2011.10.046
  111. R. Rajak, M. Saraf, and S. M. Mobin, Inorg. Chem., 2020, 59(3), 1642-1652.  https://doi.org/10.1021/acs.inorgchem.9b02762
  112. I. Hussain, S. Iqbal, T. Hussain, Y. Chen, M. Ahmad, M. S. Javed, A. AlFantazi, and K. Zhang, J. Mater. Chem. A, 2021, 9, 17790-17800.  https://doi.org/10.1039/D1TA04855D
  113. Y. Wang, S. Nie, Y. Liu, W. Yan, S. Lin, G. Cheng, H. Yang, and J. Luo, Polymers, 2019, 11(5), 821. 
  114. D. Fu, Z. Chen, C. Yu, X. Song, and W. Zhong, Prog. Nat. Sci.: Mater. Int., 2019, 29(5), 495-503.  https://doi.org/10.1016/j.pnsc.2019.08.014
  115. P. Yang, X. Song, C. Jia, and H.-S. Chen, J. Ind. Eng. Chem., 2018, 62, 250-257.  https://doi.org/10.1016/j.jiec.2018.01.002
  116. G.-C. Li, P.-F. Liu, R. Liu, M. Liu, K. Tao, S.-R. Zhu, M.-K. Wu, F.-Y. Yi, and L. Han, Dalton Trans., 2016, 45, 13311-13316.  https://doi.org/10.1039/C6DT01791F
  117. W. Gao, D. Chen, H. Quan, R. Zou, W. Wang, X. Luo, and L. Guo, ACS Sustainable Chem. Eng., 2017, 5(5), 4144-4153.  https://doi.org/10.1021/acssuschemeng.7b00112
  118. A. S. Rajpurohit, N. S. Punde, and A. K. Srivastava, J. Colloid Interface Sci., 2019, 553, 328-340.  https://doi.org/10.1016/j.jcis.2019.06.031
  119. X.-G. Han, P.-F. Wang, Y.-H. Zhang, H.-Y. Liu, J.-J. Tang, G. Yang, and F.-N. Shi, Inorganica Chim. Acta, 2022, 536, 120916. 
  120. M. Aghazadeh and H. F. Rad, Ionics, 2022, 28, 2389-2396.  https://doi.org/10.1007/s11581-022-04479-6
  121. E. R. Ezeigwe, L. Dong, J. Wang, L. Wang, W. Yan, and J. Zhang, J. Colloid Interface Sci., 2020, 574, 140-151.  https://doi.org/10.1016/j.jcis.2020.04.025
  122. X. Xu, W. Shi, W. Liu, S. Ye, R. Yin, L. Zhang, L. Xu, M. Chen, M. Zhong, and X. Cao, J. Mater. Chem. A, 2018, 6, 24086-24091.  https://doi.org/10.1039/C8TA06412A
  123. C. Miao, C. Zhou, H.-E. Wang, K. Zhu, K. Ye, Q. Wang, J. Yan, D. Cao, N. Li, and G. Wang, J. Power Sources, 2021, 490, 229532. 
  124. A. A. Meshram and S. M. Sontakke, Mater. Today: Proc., 2021, 46, 6201-6206.  https://doi.org/10.1016/j.matpr.2020.04.521
  125. M. S. Rahmanifar, H. Hesari, A. Noori, M. Y. Masoomi, A. Morsali, and M. F. Mousavi, Electrochim. Acta, 2018, 275, 76-86.  https://doi.org/10.1016/j.electacta.2018.04.130
  126. P. Wen, P. Gong, J. Sun, J. Wang, and S. Yang, J. Mater. Chem. A, 2015, 3, 13874-13883.  https://doi.org/10.1039/C5TA02461G
  127. Y. Zhang, B. Lin, Y.Sun, X. Zhang, H. Yang, and J. Wang, RSC Adv., 2015, 5, 58100-58106.  https://doi.org/10.1039/C5RA11597C
  128. S. N. Ansari, M. Saraf, A. K. Gupta, and S. M. Mobin, Chem. Asian J., 2019, 14(20), 3566-3571.  https://doi.org/10.1002/asia.201900629
  129. K.-Y. Zou, Y.-C. Liu, Y.-F. Jiang, C.-Y. Yu, M.-Li Yue, and Z.-X. Li, Inorg. Chem., 2017, 56(11), 6184-6196.  https://doi.org/10.1021/acs.inorgchem.7b00200
  130. L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, and B. Wang, Coord. Chem. Rev., 2016, 307, 361-381.  https://doi.org/10.1016/j.ccr.2015.09.002
  131. G.-C. Li, X.-N. Hua, P.-F. Liu, Y.-X. Xie, and L. Han, Mater. Chem. Phys., 2015, 168, 127-131.  https://doi.org/10.1016/j.matchemphys.2015.11.011
  132. Z. Sun, L. Hu, W. Ran, Y. Lu, and D. Jia, New J. Chem., 2016, 40, 1100-1103.  https://doi.org/10.1039/C5NJ02261D
  133. S. Maiti, A. Pramanik, and S. Mahanty, CrystEngComm, 2016, 18, 450-461.  https://doi.org/10.1039/C5CE01976A
  134. L.-D. Chen, Y.-Q. Zheng, and H.-L. Zhu, J. Mater. Sci., 2018, 53, 1346-1355.  https://doi.org/10.1007/s10853-017-1575-7
  135. S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu, D. Zhang, Q. Fang, and S. Qiu, Inorg. Chem. Front., 2015, 2, 177-183.  https://doi.org/10.1039/C4QI00167B
  136. C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, and J. Wang, Adv. Energy Mater., 2017, 7(12), 1602391. 
  137. W. Guo, Y. Xiang, Y. Xing, S. Li, J. Li, and H. Tang, Int. J. Electrochem. Sci., 2016, 11, 9216-9227.  https://doi.org/10.20964/2016.11.35
  138. H. Liu, H. Guo, L. Yue, N. Wu, Q. Li, W. Yao, R. Xue, M. Wang, and W. Yang, ChemElectroChem, 2019, 6(14), 3764-3773.  https://doi.org/10.1002/celc.201900746
  139. D. Tian, S. Chen, W. Zhu, C. Wang, and X. Lu, Mater. Chem. Front., 2019, 3, 1653-1660.  https://doi.org/10.1039/C9QM00296K
  140. F. Cao, M. Zhao, Y. Yu, B. Chen, Y. Huang, J. Yang, X. Cao, Q. Lu, X. Zhang, Z. Zhang, C. Tan, and H. Zhang, J. Am. Chem. Soc., 2016, 138(22), 6924-6927.  https://doi.org/10.1021/jacs.6b02540
  141. X. Han, K. Tao, D. Wang, and L. Han, Nanoscale, 2018, 10, 2735-2741.  https://doi.org/10.1039/C7NR07931A
  142. H. Hu, B. Y. Guan, and X. W. D. Lou, Chem, 2016, 1(1), 102-113.  https://doi.org/10.1016/j.chempr.2016.06.001
  143. S. Liu, M. Tong, G. Liu, X. Zhang, Z. Wang, G. Wang, W. Cai, H. Zhang, and H. Zhao, Inorg. Chem. Front., 2017, 4, 491-498.  https://doi.org/10.1039/C6QI00403B
  144. J. S. Chen, C. Guan, Y. Gui, and D. J. Blackwood, ACS Appl. Mater. Interfaces, 2017, 9(1), 496-504.  https://doi.org/10.1021/acsami.6b14746
  145. C. Qu, L. Zhang, W. Meng, Z. Liang, B. Zhu, D. Dang, S. Dai, B. Zhao, H. Tabassum, S. Gao, H. Zhang, W. Guo, R. Zhao, X. Huang, M. Liu, and R. Zou, J. Mater. Chem. A, 2018, 6, 4003-4012.  https://doi.org/10.1039/C7TA11100B
  146. K. Tao, X. Han, Q. Cheng, Y. Yang, Z. Yang, Q. Ma, and L. Han, Chem. Eur. J., 2018, 24(48), 12584-12591.  https://doi.org/10.1002/chem.201800960
  147. G.-C. Li, M. Liu, M.-K. Wu, P.-F. Liu, Z. Zhou, S.-R. Zhu, R. Liu, and L. Han, RSC Adv., 2016, 6, 103517-103522.  https://doi.org/10.1039/C6RA23071G
  148. Y. Zhang, L. Li, H. Su, W. Huang, and X. Dong, J. Mater. Chem. A, 2015, 3, 43-59.  https://doi.org/10.1039/C4TA04996A
  149. X. Li, R. Ding, W. Shi, Q. Xu, L. Wang, H. Jiang, Z. Yang, and E. Liu, Mater. Lett., 2017, 187, 144-147.  https://doi.org/10.1016/j.matlet.2016.10.021
  150. X. Wang, H.-M. Kim, Y. Xiao, and Y.-K. Sun, J. Mater. Chem. A, 2016, 4, 14915-14931.  https://doi.org/10.1039/C6TA06705K
  151. Y. Lu, J. Liu, X. Liu, S. Huang, T. Wang, X. Wang, C. Gu, J. Tu, and S. X. Mao, CrystEngComm, 2013, 15, 7071-7079.  https://doi.org/10.1039/c3ce41214h
  152. J. Yang, F. Zhang, X. Wang, D. He, G. Wu, Q. Yang, X. Hong, Y. Wu, and Y. Li, Angew. Chem. Int. Ed., 2016, 55(41), 12854-12858.  https://doi.org/10.1002/anie.201604315
  153. R. Zhao, S. Gao, Y. Wu, Z.Liang, H. Zhang, W. Xia, S. Li, Y. Zhao, and R. Zou, Chem. Eur. J., 2020, 26(18), 4001-4006.  https://doi.org/10.1002/chem.201904280
  154. T. Tian, L. Ai, and J. Jiang, RSC Adv., 2015, 5, 10290-10295.  https://doi.org/10.1039/C4RA15680C
  155. C. Shuai, Z. M, X. Niu, P. Zhao, Q. Dng, Y. Chen, N. Liu, and R. Guo, J. Alloys Compd., 2020, 847, 156514. 
  156. G. Qu, P. Sun, G. Xiang, J. Yin, Q. Wei, C. Wang, and X. Xu, Appl. Mater. Today, 2020, 20, 100713. 
  157. Q. Zhou, Y. Gong, and K. Tao, Electrochim. Acta, 2019, 320, 134582. 
  158. S. Gayathri, P. Arunkumar, D. Saha, and J. H. Han, J. Colloid Interface Sci., 2021, 588, 557-570.  https://doi.org/10.1016/j.jcis.2020.11.129
  159. C. Li, J. Wang, Y. Yan, P. Huo, and X. Wang, Chem. Eng. J., 2022, 446, 137108. 
  160. K. Chhetri, T. Kim, D. Acharya, A. Muthurasu, B. Dahal, R. M. Bhattarai, P. C. Lohani, I. Pathak, S. Ji, T. H. Ko, and H. Y. Kim, Chem. Eng. J., 2022, 450, 138363. 
  161. M. Y. Masoomi, K. C. Stylianou, A. Morsali, P. Retailleau, and D. Maspoch, Cryst. Growth Des., 2014, 14(5), 2092-2096.  https://doi.org/10.1021/cg500033b
  162. Y. Sun and H.-C. Zhou, Sci. Technol. Adv. Mater., 2015, 16(5), 054202. 
  163. J. Klinowski, F. A. A. Paz, P. Silva, and J. Rocha, Dalton Trans., 2011, 40, 321-330.  https://doi.org/10.1039/C0DT00708K
  164. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, ..., and R. Gref, Nature Mater., 2010, 9, 172-178.  https://doi.org/10.1038/nmat2608
  165. A. Asghar, N. Iqbal, and T. Noor, Polyhedron, 2020, 181, 114463. 
  166. P. Silva, S. M. F. Vilela, J. P. C. Tome, and F. A. A. Paz, Chem. Soc. Rev., 2015, 44, 6774-6803.  https://doi.org/10.1039/C5CS00307E
  167. N. Stock and S. Biswas, Chem. Rev., 2012, 112(2), 933-969.  https://doi.org/10.1021/cr200304e
  168. I. Stassen, M. Styles, G. Grenci, H. V. Gorp, W. Vanderlinden, S. D. Feyter, P. Falcaro, D. D. Vos, P. Vereecken, and R. Ameloot, Nature Mater., 2016, 15, 304-310.  https://doi.org/10.1038/nmat4509
  169. N. Abid, A. M. Khan, S. Shujait, K. Chaudhary, M. Ikram, M. Imran, J. Haider, M. Khan, Q. Kahn, and M. Maqbool, Adv. Colloid Interface Sci., 2022, 300, 102597. 
  170. K. Parveen, V. Banse, and L. Ledwani, AIP Conference Proceedings, 2016, 1724(1), 020048.