DOI QR코드

DOI QR Code

Applications and Challenges of Lithium-Sulfur Electrochemical Batteries

  • Mohammed Jasim M. Al Essa (Faculty of Engineering, University of Kufa)
  • Received : 2023.03.09
  • Accepted : 2023.06.16
  • Published : 2024.02.29

Abstract

This paper presents applications of lithium-sulfur (Li-S) energy storage batteries, while showing merits and demerits of several techniques to mitigate their electrochemical challenges. Unmanned aerial vehicles, electric cars, and grid-scale energy storage systems represent main applications of Li-S batteries due to their low cost, high specific capacity, and light weight. However, polysulfide shuttle effects, low conductivities, and low coulombic efficiencies signify key challenges of Li-S batteries, causing high volumetric changes, dendritic growths, and limited cycling performances. Solid-state electrolytes, interfacial interlayers, and electrocatalysts denote promising methods to mitigate such challenges. Moreover, nanomaterials have capability to improve kinetic reactions of Li-S batteries based on several properties of nanoparticles to immobilize sulfur in cathodes, stabilizing lithium in anodes while controlling volumetric growths. Li-S energy storage technologies are able to satisfy requirements of future markets for advanced rechargeable batteries with high-power densities and low costs, considering environmentally friendly systems based on renewable energy sources.

Keywords

References

  1. J. H. Kim, Front. Batter. Electrochem., 2022, 1, 1066276.
  2. A. Manthiram, Y. Fu, and Y. Su, Acc. Chem. Res., 2013, 46(5), 1125-1134. https://doi.org/10.1021/ar300179v
  3. V. K. Bharti, S. K. Cherian, M. M. Gaikwad, A. D. Pathak, and C. S. Sharma, Chemistry and operation of lithium-sulfur batteries, in Lithium-Sulfur Batteries, Elsvier, 2022, 37-55.
  4. S. Gu, C. Sun, D. Xu, Y. Lu, and J. Jin, Electrochem. Energ. Rev., 2018, 1, 599-624. https://doi.org/10.1007/s41918-018-0021-0
  5. W. Ren, W. Ma, S. Zhang, and B. Tang, Energy Storage Mater., 2019, 23, 707-732. https://doi.org/10.1016/j.ensm.2019.02.022
  6. G. D. Donato, T. Ates, H. Adenusi, A. Varzi, M. A. Navarra, and S. Passerini, Batter. Supercaps, 2022, 5(7), e202200097.
  7. C. Fu and J. Guo, Curr. Opin. Chem. Eng., 2016, 13, 53-62. https://doi.org/10.1016/j.coche.2016.08.004
  8. Y. Mo, L. Liao, D. Li, R. Pan, Y. Deng, Y. Tna, and H. Zhou, Chin. Chem. Lett., 2023, 34(1), 107130.
  9. S. J. Park, S. Y. Yang, S. A. Han, Y. J. Choi, T. Kim, M.-S. Park, J. H. Kim, and K. J. Kim, Chem. Eng. J., 2023, 460, 141620.
  10. G. S. Martynkova, G. Kratosova, S. Brozova, and S. K. Sathish, Recyclability, circular economy, and environmental aspects of lithiumesulfur batteries, in Lithium-Sulfur Batteries, Elsevier, 2022, 653-672.
  11. D. H. Yoon and Y. J. Park, J. Electrochem. Sci. Technol., 2021, 12(1), 126-136. https://doi.org/10.33961/jecst.2020.01361
  12. S. Gifford and J. Robinson, Lithium-sulfur batteries: lightweight technology for multiple sectors, Faraday Insights, The Faraday Institution, UK, 2020, 8. Available: www.faraday.ac.uk
  13. G. Palissat, Lithium-sulphur batteries: opportunities and challenges for space applications, in 8th european conference for aeronautics and space sciences (EUCASS), 2019, 1-12. DOI: 10.13009/EUCASS2019-509
  14. A. Fotouhi, D. J. Auger, L. O'Neill, T. Cleaver, and S. Walus, Energies, 2017, 10(12), 1937.
  15. L. Fan, M. Li, X. Li, W. Xiao, Z. Chen, and J. Lu, Joule, 2019, 3(2), 361-386. https://doi.org/10.1016/j.joule.2019.01.003
  16. M. Zhao, B. Li, X. Zhang, J. Huang, and Q. Zhang, ACS Cent. Sci., 2020, 6(7), 1095-1104. https://doi.org/10.1021/acscentsci.0c00449
  17. M. J. M. Al Essa, J. Energy Storage, 2018, 18, 380-388. https://doi.org/10.1016/j.est.2018.05.019
  18. M. J. M. Al Essa, J. Energy Storage, 2020, 31, 101762.
  19. M. J. M. Al Essa, J. Energy Storage, 2023, 59, 106514.
  20. M. J. M. Al Essa, J. Control. Autom. Electr. Syst., 2020, 31, 1520-1532. https://doi.org/10.1007/s40313-020-00637-1
  21. G. Li, Z. Chen, and J. Lu, Chem, 2018, 4(1), 3-7. https://doi.org/10.1016/j.chempr.2017.12.012
  22. A. M. Vassallo, Applications of batteries for grid-scale energy storage, in Advances in Batteries for Medium and Large-Scale Energy Storage, Woodhead Publishing, 2015, 587-607.
  23. O. Babayomi, Z. Zhang, T. Dragicevic, J. Hu, and J. Rodriguez, Int. J. Electr. Power Energy Syst., 2023, 147, 108812.
  24. M. J. M. Al Essa and L. M. Cipcigan, Effects of randomly charging electric vehicles on voltage unbalance in micro grids, in 2015 50th International Universities Power Engineering Conference (UPEC), Stoke on Trent, UK, 2015, 1-6.
  25. M. J. M. Al Essa and L. M. Cipcigan, Appl. Sci., 2016, 6(2), 53.
  26. M. J. M. Al Essa and L. M. Cipcigan, Integration of renewable resources into Low Voltage grids stochastically, in 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 2016, 1-5.
  27. M. J. M. Al Essa, Electr. Eng., 2023, 105, 1761-1773.
  28. D. Kaur, M. Singh, and S. Singh, Lithiume-Sulfur batteries for marine applications, in Lithium-Sulfur Batteries, Elsevier, 2022, 549-577.
  29. N. Deng, Y. Li, Q. Li, Q. Zeng, S. Luo, H. Wang, W. Kang, and B. Cheng, Energy Storage Mater., 2022, 53, 684-743. https://doi.org/10.1016/j.ensm.2022.08.003
  30. S. A. Han, H. Qutaish, J.-W. Lee, M. Park, and J. H. Kim, EcoMat., 2023, 5(2), e12283.
  31. A. B. Haruna, T. P. Mofokeng, J. J. Ogada, O. Zoubir, A. Lallaoui, F. C. El Moursli, Z. Edfouf, and K. I. Ozoemena, Electrochem. Commun., 2022, 136, 107248.
  32. K. Subasinghage, K. Gunawardane, N. Padmawansa, N. Kularatna, and M. Moradian, Energies, 2022, 15(20), 7752.
  33. E. A. Worsley, S. Margadonna, and P. Bertoncello, Nanomaterials, 2022, 12(20), 3600.
  34. A. Swiderska-Mocek, E. Rudnicka, and A. Lewandowski, J. Solid State Electrochem., 2020, 24, 1157-1164. https://doi.org/10.1007/s10008-020-04610-5
  35. T. Glossmann, A. Raj, T. Pajan, and E. Buch, Introduction to the lithium-sulfur system?: Technology and electric vehicle applications, in Lithium-Sulfur Batteries, Elsevier, 2022, 3-15.
  36. S. Yang, Z. Zhang, J. Lin, L. Zhang, L. Wang, and S. Chen, Front. Energy Res., 2022, 10, 945003.
  37. R. Mori, J. Solid State Electrochem., 2023, 27, 813-839.
  38. Z.-L. Xu, J.-K. Kim, and K. Kang, Nano Today, 2018, 19, 84-107. https://doi.org/10.1016/j.nantod.2018.02.006
  39. J. E. Knoop and S. Ahn, J. Energy Chem., 2020, 47, 86-106. https://doi.org/10.1016/j.jechem.2019.11.018
  40. X. Sun, S. Liu, W. Sun, and C. Zheng, Chin. Chem. Lett., 2023, 34(1), 107501.
  41. N. Ding, S. Wei, T. S. A. Hor, Z. Liu, and Y. Zong, J. Power Sources, 2014, 269, 111-116, https://doi.org/10.1016/j.jpowsour.2014.07.008
  42. K. R. Bugga, Prospects and Challenges of LithiumSulfur Batteries What makes Li-S attractive, in Li-S Symposium, Military Power Sources Committee (MPSC) Workshop, 2021.
  43. A. I. Kamisan, T. I. T. Kudin, A. S. Kamisan, A. F. C. Omar, M. F. M. Taib, O. H. Hassan, A. M. M. Ali, and M. Z. A. Yahya, Int. J. Hydrogen Energy, 2022, 47(13), 8630-8657. https://doi.org/10.1016/j.ijhydene.2021.12.166
  44. D. Lv, J. Zheng, Q. Li, X. Xie, S. Ferrara, Z. Nie, L. B. Mehdi, N. D. Browning, J.-G. Zhang, G. L. Graff, J. Liu, and J. Xiao, Adv. Energy Mater., 2015, 5(16), 1402290.
  45. C. Xu, T. Cleary, D. Wang, G. Li, C. Rahn, D. Wang, R. Rajamani, and H. K. Fathy, Online state estimation for a physics-based Lithium-Sulfur battery model, J. Power Sources, 2021, 489, 229495.
  46. R. Demir-Cakan, Introduction to Rechargeable Lithium-Sulfur Batteries, in Li-S Batteries, World Scientific, 2017, 1-30.
  47. H. Wang, J. Dong, K. Schelkun, S. Penski, C. Silkowski, M. Wixom, and L. Alexander, Development of Lithium Sulfur Batteries for High Energy Applications, in 2020 NASA Aerospace Battery Workshop, 2020.
  48. R. Thangavel, A. G. Kannan, R. Ponraj, K. Kaliyappan, W.-S. Yoon, D.-W. Kim, and W.-S. Lee, Nanomaterials, 2020, 10(6), 1220.
  49. W. Han, Z. Li, and R. Wang, IOP Conf. Ser.: Earth Environ. Sci., 2022, 1011, 012004. https://doi.org/10.1088/1755-1315/1048/1/012004
  50. S. Dorfler, H. Althues, P. Hartel, T. Abendroth, B. Schumm, and S. Kaskel, Joule, 2020, 4(3), 539-554. https://doi.org/10.1016/j.joule.2020.02.006
  51. Q. Zhu, C. Ye, and D. Mao, Nanomaterials, 2022, 12(20), 3612.
  52. X. Zhao, C. Wang, Z. Li, X. Hu, A. A. Razzaq, and Z. Deng J. Mater. Chem. A, 2021, 9, 19282-19297, https://doi.org/10.1039/D1TA03300J
  53. W. Xue, L. Miao, L. Qie, C. Wang, S. Li, J. Wang, and J. Li, Curr. Opin. Electrochem., 2017, 6(1), 92-99. https://doi.org/10.1016/j.coelec.2017.10.007
  54. U. Stoeck, J. Balach, M. Klos, D. Wadewitz, E. Ahrens, J. Eckert, and L. Giebeler, J. Power Sources, 2016, 309, 76-81. https://doi.org/10.1016/j.jpowsour.2015.11.077
  55. M. Yan, W.-P. Wang, Y.-X. Yin, L.-J. Wan, and Y.-G. Guo, EnergyChem, 2019, 1, 100002.
  56. S. Ni, S. Tan, Q. An, and L. Mai, J. Energy Chem., 2020, 44, 73-89. https://doi.org/10.1016/j.jechem.2019.09.031
  57. P. Modiba, M. Matoetoe, and A. M. Crouch, Anal. Lett., 2011, 44(11), 1967-1975. https://doi.org/10.1080/00032719.2010.539728
  58. X. Wang, Y. Tan, G. Shen, and S. Zhang, J. Energy Chem., 2020, 41, 149-170. https://doi.org/10.1016/j.jechem.2019.05.010
  59. D. A. Dornbusch, R. P. Viggiano, J. W. Connell, Y. Lin, and V. F. Lvovich, Electrochim. Acta, 2022, 403, 139406.
  60. S. Bandyopadhyay and B. Nandan, Mater. Today Energy, 2023, 31, 101201.
  61. F. Shi, L. Zhai, Q. Liu, J. Yu, S. P. Lau, B. Y. Xia, and Z.-L. Xu, J. Energy Chem., 2023, 76, 127-145.
  62. Y. Huang, X. Gao, X. Han, Z. Guang, and X. Li, Solid State Ion., 2020, 347, 115248.
  63. S. Choudhury, Curr. Opin. Electrochem., 2020, 21, 303-310. https://doi.org/10.1016/j.coelec.2020.03.013
  64. M. J. Seong, S. Manivannan, K. Kim, and T. Yim, J. Electrochem. Sci. Technol. Electrochem., 2021, 12(4), 453-457. https://doi.org/10.33961/jecst.2021.00493
  65. A. A. Abdelhamid, A. Mendoza-Garcia, and J. Y. Ying, Nano Energy, 2022, 93, 106860.
  66. M. Byakodi, N. S. Shrikrishna, R. Sharma, S. Bhansali, Y. Mishra, A. Kaushik, and S. Gandhi, Biosens. Bioelectron. X, 2022, 12, 100284.
  67. W. Liu, X. Qiao, S. Liu, and P. Chen, Nanomaterials, 2022, 12(21), 3780.
  68. X. Yang, X. Li, K. Adair, H. Zhang, and X. Sun, Electrochem. Energ. Rev., 2018, 1, 239-293. https://doi.org/10.1007/s41918-018-0010-3
  69. H. Qutaish, S. A. Han, Y. Rehman, K. Konstantinov, M.-S. Park, and J. H. Kim, Sci. Technol. Adv. Mater., 2022, 23(1), 169-188. https://doi.org/10.1080/14686996.2022.2050297
  70. Y. Hyeon, J. Lee, H. Qutaish, S. A. Han, S. H. Choi, S. W. Moon, M.-S. Park, D. Whang, and J. H. Kim, Energy Storage Mater., 2020, 33, 95-107. https://doi.org/10.1016/j.ensm.2020.07.015
  71. J. Lee, S. H. Choi, H. Qutaish, Y. Hyeon, S. A. Han, Y.-U. Heo, D. Whang, J.-W. Lee, J. Moon, M.-S. Park, J. H. Kim, and S. X. Dou, Energy Storage Mater., 2021, 37, 315-324. https://doi.org/10.1016/j.ensm.2021.02.019
  72. O. A. Oviedo and E. P. M. Leiva, Curr. Opin. Electrochem., 2017, 1(1), 1-6. https://doi.org/10.1016/j.coelec.2016.12.008
  73. Alvaro Donoro, D. Cintora-Juarez, and V. Etacheri, Carbon nanomaterials for rechargeable lithium-Sulfur batteries, in Micro and Nano Technologies, Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion, Elsevier, 2019, 279-309.
  74. J. Park, S.-H. Yu, and Y.-E. Sung, Nano Today, 2018, 18, 35-64. https://doi.org/10.1016/j.nantod.2017.12.010
  75. H. S. Kim, T.-G. Jeong, and Y.-T. Kim, J. Electrochem. Sci. Technol. Electrochem., 2016, 7(3), 228-233. https://doi.org/10.33961/JECST.2016.7.3.228
  76. W. Zhao, W. Choi, and W. Yoon, J. Electrochem. Sci. Technol. Electrochem., 2020, 11(3), 195-219. https://doi.org/10.33961/jecst.2020.00745
  77. L. Ma, K. E. Hendrickson, S. Wei, and L. A. Archer, Nano Today, 2015, 10(3), 315-338. https://doi.org/10.1016/j.nantod.2015.04.011
  78. K. Zhu, C. Wang, Z. Chi, F. Ke, Y. Yang, A. Wang, W. Wang, and L. Miao, Front. Energy Res., 2019, 7, 123.
  79. J. B. Robinson, K. Xi, R. V. Kumar, A. C. Ferrai, H. Au, M.-M. Titirici, A. Parra-Puerto, A. Kucernak, S. D. S. Fitch, N. Garcia-Araez et al., J. Phys. Energy, 2021, 3, 031501.
  80. Deloitte Center for Energy Solutions, Supercharged: Challenges and opportunities in global battery storage markets, Deloitte, US, 2018. https://www2.deloitte.com/content/dam/Deloitte/bg/Documents/energy-resources/gx-er-challenges-opportunities-global-battery-storage-markets.pdf (accessed 23 December 2022).
  81. W. Zhang, S. Li, A. Zhou, H. Song, Z. Cui, and L. Du, Molecules, 2021, 26(21), 6341.
  82. J. Sun, T. Wang, Y. Gao, Z. Pan, R. Hu, and J. Wang, InfoMat, 2022, 4(9), e12359.
  83. D. Lu, Y. Shao, T. Lozano, W. D. Bennett, G. L. Graff, B. Polzin, J. Zhang, M. H. Engelhard, N. T. Saenz, W. A. Henderson, P. Bhattacharya, J. Liu, and J. Xiao, Adv. Energy Mater., 2015, 5(3), 1400993.
  84. Technavio, Lithium-Sulfur Battery Market Size to Grow by USD 1.00 billion, Use of Nanotechnology in Batteries to be a Key Trend, 2022. https://www.prnewswire.com/news-releases/lithium-sulfur-battery-market-size-to-grow-by-usd-1-00-billion-use-of-nanotechnology-in-batteries-to-be-a-key-trend---technavio-301583084.html (accessed 18 November 2022).
  85. S. Nanda, A. Bhargav, and A. Manthiram, Joule, 2020, 4(5), 1121-1135. https://doi.org/10.1016/j.joule.2020.03.020
  86. G. Zhou, H. Chen, and Y. Cui, Nat. Energy, 2022, 7, 312-319. https://doi.org/10.1038/s41560-022-01001-0
  87. C. Xu, Q. Dai, L. Gaines, M. Hu, A. Tukker, and B. Steubing, Commun. Mater., 2020, 1, 99.
  88. Market Growth Reports, Lithium-Sulfur Battery Market with PESTAL & SWOT Analysis, 2023. https://www.marketwatch.com/press-release/2030-lithium-sulfur-battery-market-with-pestal-swot-analysis-2023-05-26 (accessed 01 May 2023).