Acknowledgement
이 논문은 2023년 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(재단 과제관리번호: 2021RIS-003)
References
- Campbell, F. C. (Ed.). (2013). Inspection of metals: understanding the basics. ASM International.
- Hussain, M. (2023). YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection. Machines, 677. https://doi.org/10.3390/machines11070677
- Jiyeon Yim, Seong-Oak Lee, Kyoung-Pyo Kim, & Yonggyun Yu. (2021). Application of object detection algorithm for psychological analysis of children's drawing. Journal of Korea Society of Industrial Information Systems, 26(5), 1-9.
- Kaya, Omer & Codur, Muhammed & Mustafaraj, Enea. (2023). Automatic Detection of Pedestrian Crosswalk with Faster R-CNN and YOLOv7. Buildings, 13, 1070. https://doi.org/10.3390/buildings13041070.
- K., Nanthini., D., Sivabalaselvamani., K., Chitra., S., Kavinkumar. (2023). A Survey on Data Augmentation Techniques. 913-920.
- Moon-Seok Jeon, Yeongtae Kim, Yuseok Jeong, Hyojun Bae, Chaewon Lee, Song Lim Kim, & Inchan Choi (2023). A Study on the Artificial Intelligence-Based Soybean Growth Analysis Method. Journal of Korea Society of Industrial Information Systems, 28(5), 1-14.
- P. Soviany and R. T. Ionescu. (2018). "Optimizing the Trade-Off between Single-Stage and Two-Stage Deep Object Detectors using Image Difficulty Prediction," 2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, pp. 209-214.
- See, J. E. (2015). Visual Inspection Reliability for Precision Manufactured Parts. Human Factors, 57(8), 1427-1442. https://doi.org/10.1177/0018720815602389
- Sundaram, Sarvesh, and Abe Zeid. (2023). "Artificial Intelligence-Based Smart Quality Inspection for Manufacturing" Micromachines 14, no. 3: 570. https://doi.org/10.3390/mi14030570
- Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
- Z. Haimer, K. Mateur, Y. Farhan and A. A. Madi,. (2023). "YOLO Algorithms Performance Comparison for Object Detection in Adverse Weather Conditions," 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Mohammedia, Morocco, pp. 1-7.