DOI QR코드

DOI QR Code

유튜브를 활용한 전기 자동차 결함에 대한 구전 확산 연구: 네트워크 통계분석을 중심으로

A Study on Word-of-Mouth of an Electric Automobile using YouTube: A Focus on Statistical Network Analysis

  • 정의범 (한신대학교 경영학과) ;
  • 오건택 (한국과학기술원 기술경영학부)
  • 투고 : 2023.10.23
  • 심사 : 2023.12.04
  • 발행 : 2024.02.29

초록

최근 정보통신 기술의 발전으로 인해 유튜브는 이용자 자신의 관심사와 경험을 담은 콘텐츠를 만들어 공유함으로써 새로운 문화 현상을 창출하고 확산시키는 강력한 온라인 공간이 되었다. 특히, 제조 분야는 소비자의 직접적인 접촉도가 상대적으로 거의 없었다는 이유로 소셜미디어에 대한 연구가 거의 없었다. 기업에 있어 유튜브는 자사 제품 및 브랜드의 홍보와 같이 경영에 있어 긍정적인 효과를 가질 수 있지만, 그와 반대로 루머나 잘못된 정보로 인해 생산 단절과 같은 제조 리스크가 발생할 수 있다. 그렇기 때문에 기업은 유튜브 동영상의 특징에 따라 구전 확산에 따른 특징을 살펴볼 필요가 있다. 이에 본 연구는 유튜브에서 전기 자동차의 결함을 다루고 있는 동영상을 추출하여 구독자 수 및 조회 수에 따라 어떤 확산 네트워크 구조를 갖고 있는지를 네트워크 통계 분석을 통해서 사시점을 규명하고자 한다.

With recent advances in information and communication technology, YouTube has become a powerful online space for users to create and share content about their interests and experiences, creating new cultural phenomena. In particular, there needs to be more research on social media in the manufacturing sector because, unlike distribution and retail, there has been relatively little direct contact with consumers. YouTube can positively affect firms' performance by promoting products and brands. On the other hand, it can also cause risks, such as production disruption due to rumors or misinformation. Thus, it is necessary for firms to examine how information about an electric automobile defects spreads on YouTube according to the number of subscribers and views through statistical network analysis.

키워드

과제정보

이 논문(작품)은 한신대학교 학술연구비 지원에 의하여 연구(창작)되었음.

참고문헌

  1. Aswani, R., Kar. A. K. and Ilavarasan, P. V. (2020). Experience: Managing Misinformation in Social Media-Insights for Policymakers from Twitter Analytics, Journal of Data and Information Quality, 12(1), 1-18. https://doi.org/10.1145/3341107
  2. Bambauer-Sachse, S. and Mangold, S. (2011). Brand Equity Dilution Through Negative Online Word-of-mouth Communication, Journal of Retailing and Consumer Services, 18(1), 38-45. https://doi.org/10.1016/j.jretconser.2010.09.003
  3. Bashir, N., Papamichail, K. N. and Malik, K. (2017). Use of Social Media Applications for Supporting New Product Development Processes in Multinational Corporations, Technological Forecasting and Social Change, 120, 176-183. https://doi.org/10.1016/j.techfore.2017.02.028
  4. Burgess, J. and Green, J. (2013). YouTube: Online Video and Participatory Culture, Medford, John Wiley & Sons.
  5. Chae, B. K. (2015). Insights From Hashtag# Supply Chain and Twitter Analytics: Considering Twitter and Twitter Data for Supply Chain Practice and Research, International Journal of Production Economics, 165, 247-259. https://doi.org/10.1016/j.ijpe.2014.12.037
  6. Chang, Y. I. and Jung, Y. S. (2019). A Study on YouTube Product Review Channel Subscribers' Product Attitude Formation Process, The e-Business Studies, 20(2), 77-97. https://doi.org/10.20462/TeBS.2019.4.20.2.77
  7. Chen, S., Mao, J., Li, G., Ma, C. and Cao, Y (2020). Uncovering Sentiment and Retweet Patterns of Disaster-related Tweets from a Spatiotemporal Perspective - A Case Study of Hurricane Harvey, Telematics and Informatics, 47, 1-18. https://doi.org/10.1016/j.tele.2019.101326
  8. Cheng, J, J., Liu, Y., Shen, B. and Yuan, W. G. (2013). An Epidemic Model of Rumo Diffusion in Online Social Networks, The European P hysical Journal B, 86(29), 1-7. https://doi.org/10.1140/epjb/e2012-30483-5
  9. Choi, J, Y., Han, C. H. and Kim, B. S. (2020). The Influence of YouTube Creator's Attraction and Communication on Relationship Building and Supporting Intention: Relationship Marketing Strategy Approach, The e-Business Studies, 21(1), 131-151 https://doi.org/10.20462/TeBS.2020.02.21.1.131
  10. Choi, J. W. (2019). The Effect of YouTube Travel Contents Features on Flow and Satisfaction, Journal of Tourism Management Research, 23(2), 193-211. https://doi.org/10.18604/tmro.2019.23.2.10
  11. Dong, W. Y., Park, S. W. and Lee, D. H. (2021). Demand Chain Operational Solutions in the Manufacturing Industry: A New Retail Perspective, Korean Production and Operations Management Society, 32(4), 335-355. https://doi.org/10.32956/kopoms.2021.32.4.335
  12. Fan, C., Jiang, Y., Yang, Y., Zhang, C. and Mostafavi, A. (2020). Crowd or Hubs: Information Diffusion Patterns in Online Social Networks in Disasters, International Journal of Disaster Risk Reduction, 46, 1-10. https://doi.org/10.1016/j.ijdrr.2020.101498
  13. Ferrara, E. and Yang, Z. (2015). Quantifying the Effect of Sentiment on Information Diffusion in Social Media, Computer Science, 1(51), 1-15. https://doi.org/10.7717/peerj-cs.26
  14. Go, S. R. (2022). The Effect of Characteristics of Information Sources and Content on the Purchase Intention of YouTube Viewers: Differences on the Level of Self-Control of Viewers, Korean Journal of Business Administration, 35(1), 53-70. https://doi.org/10.18032/kaaba.2022.35.1.53
  15. Goh, K. Y., Heng, C. S. and Lin, Z. (2013). Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User-and Marketer-generated Content, Information Systems Research, 24(1), 88-107. https://doi.org/10.1287/isre.1120.0469
  16. Grover, P., Kar, A. K. and Ilavarasan, P. V. (2019). Impact of Corporate Social Responsibility on Reputation-Insights from Tweets on Sustainable Development Goals by CEOs, International Journal of Information Management, 48, 39-52. https://doi.org/10.1016/j.ijinfomgt.2019.01.009
  17. Han, M. C. (2019). Social Media Commerce: Next Frontier in Online Shopping Focused on Chinese Consumers, Global Business & Finance Review, 24(1), 80-93. https://doi.org/10.17549/gbfr.2019.24.1.80
  18. Han, S. J. (2020). The Effect of Characteristics of YouTube Tourism Contents on Use Satisfaction, Continuous Use Intention and Information Sharing Intention, Journal of Corporation and Innovation, 43(3), 155-175.
  19. Haryanto, B. and Budiman, S. (2016). The Green Brand Marketing Strategies that Utilize Word of Mouth: Survey on Green Electronic Products in Indonesia, Global Business & Finance Review, 21(2), 20-33. https://doi.org/10.17549/gbfr.2016.21.2.20
  20. Jeong, E. B. (2022). A Study on Negative Word-of-mouth Virality of Social Media Using Big Data Analysis: From the Supply Chain Risk's Perspective, Journal of the Korea Industrial Information Systems Research, 27(2), 163-176.
  21. Jeong, E. B., and Kim, D. S. (2023). Supply Network Risk Analysis from Social and Bayesian Network Perspectives, Korean Production and Operations Management Society, 34(1), 1-17. https://doi.org/10.32956/kopoms.2023.34.1.1
  22. Jeong, E. B. and Yoo, H. N. (2021). Spread of Negative Word-of-mouth of Manufacturing Companies Via Twitter: From the Supply Chain Risk's Perspective. Journal of the Korea Industrial Information Systems Research, 26(5), 79-94.
  23. Kim, J., Bae, J. and Hastak, M. (2018). Emergency Information Diffusion on online social media during storm Cindy in U.S., International Journal of Information Management, 40, 153-165. https://doi.org/10.1016/j.ijinfomgt.2018.02.003
  24. Kim, M. R. and Jeon, J. E. (2019). The Effects of Video-sharing Platform Activities on Brand Equity : Focusing on YouTube Channel, Journal of Distribution and Management Research, 22(2), 25-33.
  25. Korea Petroleum Association (2018). Global Electric Vehicle Distribution Trends .https://www.petroleum.or.kr/information/report.
  26. Krause, S., Mattner, L., James, R., Guttridge, T., Corcoran, M. J., Gruber, S., H. and Krause, J. (2009). Social Network Analysis and Valid Markov Chain Monte Carlo Tests of Null Models, Behavioral Ecology and Sociobiology, 63(7), 1089-1096. https://doi.org/10.1007/s00265-009-0746-1
  27. Kwak, K., Y. (2017). Social Network Analysis, Seoul, Cheongram.
  28. Lam, H. K., Yeung, A. C. and Cheng, T. E. (2016). The Impact of Firms' Social Media Initiatives on Operational Efficiency and Innovativeness, Journal of Operations Management, 47, 28-43. https://doi.org/10.1016/j.jom.2016.06.001
  29. Lee, D. H. and Jeong, E, B. (2023). Analysis of Trends of Critical Issues and Topics in the Service Sector: Comparing YouTube Videos and Research Publications, Journal of the Korea Industrial Information Systems Research, 28(4), 59-76.
  30. Lee, H. J. and Kim, Y, H. (2022). A Study on the Advertising Effect According to the Level of Awareness on Influencers and the Type of Advertisement: Focusing on Youtube, The e-Business Studies, 23(6), 115-129. https://doi.org/10.20462/tebs.2022.11.23.6.115
  31. Lee, M. T., Yi, J. Y. and Shim, S. W. (2020), An Exploratory Study on the Effect of YouTube Beauty Influencer Attributes on Contents Attitude, Product Attitude, Word of Mouth Intention, and Purchase Intention, The Korean Journal of Advertising, 31(5), 117-142. https://doi.org/10.14377/KJA.2020.7.15.117
  32. Lee, S. and Kim, S. (2019). The Boomerang Effect of Influencer Marketing: How the Interaction between Influencer Type and Social Distance Affects Negative Word of Mouth Intentions, Korean Journal of Business Administration, 32(11), 2005-2028. https://doi.org/10.18032/kaaba.2019.32.11.2005
  33. Li, L., Tian, J., Zhang, Q. and Zhou, J. (2021). Influence of Content and Creator Characteristics on Sharing Disaster-related Information on Social Media, Information & Management, 58(5), 1-18.
  34. Lusher, D., Koskinen, J., and Robins, G. (2013). Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications, Cambridge, Cambridge University Press.
  35. Majumdar, A. and Bose, I. (2019). Do Tweets Create Value? A Multi-Period Analysis of Twitter Use and Content of Tweets for Manufacturing Firms, International Journal of Production Economics, 216(October), 1-11. https://doi.org/10.1016/j.ijpe.2019.04.008
  36. Marketing Chart (2017). The Fortune 500 increasingly embraces YouTube & Instagram. Available at https://www.marketingcharts.com/digital/social-media-81061.
  37. OECD (2008). Productivity Growth in Services. OECD Facebook
  38. Oh, K. T., Jeong, E. B. and Yoo, H. N. (2023). Effects of Working Capital Management on Small and Medium-sized Enterprises' Profitability from the Continuity of Supply Chain Relationships, Global Business & Finance Review, 28(5), 51-66.
  39. Oh, O., Kwon, K. H. and Rao, H. R. (2010). An Exploration of Social Media Inextreme Events: Rumor Theory and Twitter during the Haiti Earthquake 2010, Proceedings of the Thirty First International Conference on Information Systems, 1-13.
  40. Park, C. S. and Kang., Ah. R. (2020). Exploring Endogeneous Processes in Automobile Supply Network: An Exponential Random Graph Model Analysis, Korean Management Review, 49(1), 129-153. https://doi.org/10.17287/kmr.2020.49.1.129
  41. Park, E. K. (2021). Relationships among Characteristics of Tourism Contents on YouTube, User Satisfaction and Travel Intention: Additional test of Differences among the Variables by User Characteristics, Journal of Tourism Management Research, 25(2), 183-207. https://doi.org/10.18604/tmro.2021.25.2.10
  42. Park, H. H. (2019). Using ERGM (Exponential Random Graph Model) in Exploring Network Effects: A Case Study of Policy Networks, Modern Society and Public Administration, 29(1), 35-61. https://doi.org/10.26847/mspa.2019.29.1.35
  43. Park, S. J., Yon, S. L. and Park, H. W. (2015). Comparing Twitter and YouTube Networks in Information Diffusion: The Case of the 'Occupy Wall Street' Movement, Technological Forecasting and Social Change, 95, 208-217. https://doi.org/10.1016/j.techfore.2015.02.003
  44. Pew Research Center (2023). https://www.pewresearch.org/short-reads/2023/04/24/teens-and-social-media-key-findings-from-pew-research-center-surveys/.
  45. Prell, C. (2012). Social Network Analysis: History, Theory, and Methodology, California, SAGE Publications Inc.
  46. Robins, G. (2007). Advances in Exponential Random Praph (p*) Models, Social Networks, 29(2), 169-172. https://doi.org/10.1016/j.socnet.2006.08.004
  47. Robins, G., Pattison, P., Kalish, Y. and Lusher, D. (2007a). An Introduction to Exponential Random Graph (p*) Models for Social Networks, Social Networks, 29(2), 173-191. https://doi.org/10.1016/j.socnet.2006.08.002
  48. Robins, G., Snijders, T. A. B. Wang, P., Handcock, M. and Pattison, P. (2007b). Recent Developments in Exponential Random Graph (p*) Models for Social Networks, Social Networks, 29(2), 192-215. https://doi.org/10.1016/j.socnet.2006.08.003
  49. Shin, J., Jian, L., Driscoll, K. and Bar, F. (2018). The Diffusion of Misinformation on Social Media: Temporal Pattern, Message, and Source, Computers in Human Behavior, 83(6), 278-287. https://doi.org/10.1016/j.chb.2018.02.008
  50. Snijders, T. A. (2017). Stochastic Actor-oriented Models for Network Dynamics, Annual Review of Statistics and Its Application, 4, 343-363. https://doi.org/10.1146/annurev-statistics-060116-054035
  51. Son, J., Lee, J., Larsen, K., R. and Woo, J. (2020). Understanding the Uncertainty of Disaster Tweets and its Effect on retweeting: The Perspectives of Uncertainty Reduction Theory and Information Entropy, Journal of the Association for Information Science and Technology, 71(10), 1145-1161. https://doi.org/10.1002/asi.24329
  52. Stieglitz, S. and Dang-Xuan, L. (2013). Emotions and Information Diffusion in Social Media-Sentiment of Microblogs and Sharing Behavior, Journal of Management Information Systems, 29(4), 217-248. https://doi.org/10.2753/MIS0742-1222290408
  53. Tajvidi, R. and Karami, A. (2017). The Effect of Social Media on Firm Performance, Computers in Human Behavior, 115, 1-10. https://doi.org/10.1016/j.chb.2017.09.026
  54. Thomas, K. J. and Akdere, M. (2013). Social Media as Collaborative Media in Workplace Learning, Human Resource Development Review, 12(3), 329-344. https://doi.org/10.1177/1534484312472331
  55. Verhagen, T., Nauta, A. and Feldberg, F. (2013). Negative Online Word-of-mouth: Behavioral indicator or emotional release? Computers in Human Behavior, 29(4), 1430-1440. https://doi.org/10.1016/j.chb.2013.01.043
  56. Wang, G., Gunasekaran, A., Ngai, E. W. and Papadopoulos, T. (2016). Big Data Analytics in Logistics and Supply Chain Management: Certain Investigations for Research an Applications, International Journal of Production Economics, 176, 98-110 https://doi.org/10.1016/j.ijpe.2016.03.014
  57. Watts, D. J. and Strogatz, S. H. (1998). Collective Dynamics of 'Small-world' Networks, Nature, 393, 440-44. https://doi.org/10.1038/30918
  58. Wi, J., N. and Kim, Y., J. (2018). A Study on the Vendor Evaluation of the Automotive Industry Using Social Network Analysis, Korean Journal of Logistics, 26(2), 41-53. https://doi.org/10.15735/KLS.2018.26.2.003
  59. Wu, T., Blackhurst, J. and Chidambaram, V. (2006). A Model for Inbound Supply Risk Analysis, Computers in Industry, 57(4), 350-365. https://doi.org/10.1016/j.compind.2005.11.001
  60. Yoo, J. M. (2012). A Study on the Promotional Activities Employing SNS (Social Network Service), CJU Journal of Business and Economics, 35(2), 101-123.
  61. YTN (2018), http://www.sedaily.com/NewsView/1RZJJ60AYG.
  62. Yu, E. A. and Choi, J. E. (2020). Effect of Influencer Characteristics and Consumer Persuasion Knowledge on Consumer WOM Intention, The Korean Journal of Advertising and Public Relations, 22(4), 36-61. https://doi.org/10.16914/kjapr.2020.22.4.36