DOI QR코드

DOI QR Code

Hierarchical multiscale modeling for predicting the physicochemical characteristics of construction materials: A review

  • Jin-Ho Bae (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Taegeon Kil (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Giljae Cho (Khanstone P&D Team, Hyundai L&C) ;
  • Jeong Gook Jang (Division of Architecture and Urban Design, Urban Science Institute, Incheon National University) ;
  • Beomjoo Yang (School of Civil Engineering, Chungbuk National University)
  • 투고 : 2023.06.01
  • 심사 : 2024.01.04
  • 발행 : 2024.03.25

초록

The growing demands for sustainable and high-performance construction materials necessitate a deep understanding of their physicochemical properties by that of these heterogeneities. This paper presents a comprehensive review of the state-of-the-art hierarchical multiscale modeling approach aimed at predicting the intricate physicochemical characteristics of construction materials. Emphasizing the heterogeneity inherent in these materials, the review briefly introduces single-scale analyses, including the ab initio method, molecular dynamics, and micromechanics, through a scale-bridging technique. Herein, the limitations of these models are also overviewed by that of effectively scale-bridging methods of length or time scales. The hierarchical multiscale model demonstrates these physicochemical properties considering chemical reactions, material defects from nano to macro scale, microscopic properties, and their influence on macroscopic events. Thereby, hierarchical multiscale modeling can facilitate the efficient design and development of next-generation construction.

키워드

과제정보

This research was supported by Chungbuk National University KNUDP program (2022).

참고문헌

  1. Abdalla, A. and Salih, A. (2022), "Implementation of multi-expression programming (MEP), artificial neural network (ANN), and M5P-tree to forecast the compression strength cement-based mortar modified by calcium hydroxide at different mix proportions and curing ages", Innov., 7(2), 153. https://doi.org/10.1007/s41062-022-00761-8. 
  2. Aboudi, J., Arnold, S.M. and Bednarcyk, B.A. (2013), Chapter 3-Fundamentals of the Mechanics of Multiphase Materials, Butterworth-Heinemann, Oxford, UK. 
  3. Ahmed, H.U., Mohammed, A.S. and Mohammed, A.A. (2022), "Multivariable models including artificial neural network and M5P-tree to forecast the stress at the failure of alkali-activated concrete at ambient curing condition and various mixture proportions", Neural Comput. Appl., 34(20), 17853-17876. https://doi.org/10.1007/s00521-022-07427-7. 
  4. Alyousef, R., Alabduljabbar, H., Mohamed, A.M., Alaskar, A., Jermsittiparsert, K. and Ho, L.S. (2020), "A model to develop the porosity of concrete as important mechanical property", Smart Struct. Syst., 26(2), 147-156. https://doi.org/10.12989/sss.2020.26.2.147. 
  5. Andreoni, W. and Yip, S. (2020), An Introduction. Handbook of Materials Modeling: Applications: Current and Emerging Materials, Springer, New York, 
  6. Arayro, J., Dufresne, A., Zhou, T., Ioannidou, K., Ulm, J.F., Pellenq, R. and Beland, L.K. (2018), "Thermodynamics, kinetics, and mechanics of cesium sorption in cement paste: A multiscale assessment", Phys. Rev. Mater., 2(5), 053608. https://doi.org/10.1103/PhysRevMaterials.2.053608. 
  7. Bakhshi, N. and Taheri-Behrooz, F. (2019), "Length effect on the stress concentration factor of a perforated orthotropic composite plate under in-plane loading", Compos. Mater. Eng., 1(1), 71-90. https://doi.org/10.12989/cme.2019.1.1.071. 
  8. Bang, J., Bae, J.H., Jung, J. and Yang, B. (2022), "A short review of the literature on the multiscale modeling of nanoparticle-reinforced composites", Multiscale Sci. Eng., 4(3), 94-101. https://doi.org/10.1007/s42493-022-00083-y. 
  9. Bartlett, R.J., Lotrich, V.F. and Schweigert, I.V. (2005), "Ab initio density functional theory: The best of both worlds?", J. Chem. Phys., 123(6), 062205. https://doi.org/10.1063/1.1904585. 
  10. Bernard, O., Ulm, F.J. and Lemarchand, E. (2003), "A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials", Cement. Concrete Res., 33(9), 1293-1309. https://doi.org/10.1016/S0008-8846(03)00039-5. 
  11. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021. 
  12. Chaka, A.M. (2018), "Ab initio thermodynamics of hydrated calcium carbonates and calcium analogues of magnesium carbonates: Implications for carbonate crystallization pathways", ACS Earth Space Chem., 2(3), 210-224. https://doi.org/10.1021/acsearthspacechem.7b00101. 
  13. Chaka, A.M. (2019), "Quantifying the impact of magnesium on the stability and water binding energy of hydrated calcium carbonates by ab initio thermodynamics", J. Phys. Chem. A, 123(13), 2908-2923. https://doi.org/10.1021/acs.jpca.9b00180. 
  14. Chan, L.Y. and Andrawes, B. (2010), "Finite element analysis of carbon nanotube/cement composite with degraded bond strength", Comput. Mater. Sci., 47(4), 994-1004. https://doi.org/10.1016/j.commatsci.2009.11.035. 
  15. Cheung, J., Jeknavorian, A., Roberts, L. and Silva, D. (2011), "Impact of admixtures on the hydration kinetics of Portland cement", Cement Concrete Res., 41(12), 1289-1309. https://doi.org/10.1016/j.cemconres.2011.03.005. 
  16. Choi, J., Yang, S., Yu, S., Shin, H. and Cho, M. (2012), "Method of scale bridging for thermoelasticity of cross-linked epoxy/SiC nanocomposites at a wide range of temperatures", Polym., 53(22), 5178-5189. https://doi.org/10.1016/j.polymer.2012.08.041. 
  17. Chopard, B., Falcone, J.L., Kunzli, P., Veen, L. and Hoekstra, A. (2018), "Multiscale modeling: Recent progress and open questions", Multiscale Multidiscip. Model. Exp. Des., 1(1), 57-68. https://doi.org/10.1016/j.jocs.2017.07.004. 
  18. Constantinides, G., Ulm, F.J. and Van Vliet, K. (2003), "On the use of nanoindentation for cementitious materials", Mater. Struct., 36(3), 191-196. https://doi.org/10.1007/BF02479557. 
  19. Coultrup, O.J., Browne, M., Hunt, C. and Taylor, M. (1970), "Computational evaluation of the effects of internal defects on fatigue damage accumulation in bone cement", 54th Annual Meeting of the Orthopaedic Research Society, San Francisco, CA, USA, March. 
  20. Cygan, R.T., Liang, J.J. and Kalinichev, A.G. (2004), "Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field", J. Phys. Chem. B, 108(4), 1255-1266. https://doi.org/10.1021/jp0363287. 
  21. Deng, Z.C., Wang, J.W. and Ding, J.M. (2021), "The influence of containing supplementary cementitious materials on preparation and properties for UHPC", Comput. Concrete, 28(4), 405-413. https://doi.org/10.12989/cac.2021.28.4.405. 
  22. Dickson, C.J., Hornak, V., Pearlstein, R.A. and Duca, J.S. (2017), "Structure-kinetic relationships of passive membrane permeation from multiscale modeling", J. Am. Chem. Soc., 139(1), 442-452. https://doi.org/10.1021/jacs.6b11215. 
  23. Dimitrienko, Y.I., Dimitrienko, I.D. and Sborschikov, S.V. (2015), "Multiscale hierarchical modeling of fiber reinforced composites by asymptotic homogenization method", Appl. Math. Sci., 9(145), 7211-7220. http://doi.org/10.12988/ams.2015.510641. 
  24. Doghri, I. and Ouaar, A. (2003), "Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms", Int. J. Solids Struct., 40(7), 1681-1712. https://doi.org/10.1016/S0020-7683(03)00013-1. 
  25. Duin, A.C., Dasgupta, S., Lorant, F. and Goddard, W.A. (2001), "ReaxFF: A reactive force field for hydrocarbons", J. Phys. Chem. A, 105(41), 9396-9409. https://doi.org/10.1021/jp004368u. 
  26. Ellis, B.D. and McDowell, D.L. (2017), "Application-specific computational materials design via multiscale modeling and the inductive design exploration method (IDEM)", Integr. Mater. Manuf. Innov., 6(1), 9-35. https://doi.org/10.1007/s40192-017-0086-3. 
  27. Emad, W., Mohammed, A.S., Bras, A., Asteris, P.G., Kurda, R., Muhammed, Z. Hassan, A.M.T., Qaidi, S. and Sihag, P. (2022), "Metamodel techniques to estimate the compressive strength of UHPFRC using various mix proportions and a high range of curing temperatures", Constr. Build. Mater., 349, 128737. https://doi.org/10.1016/j.conbuildmat.2022.128737. 
  28. Emad, W., Salih, A., Kurda, R. and Hassan, A.M.T. (2021), "Multivariable models to forecast the mechanical properties of polymerized cement paste", J. Mater. Res. Technol., 14, 2677-2699. https://doi.org/10.1016/j.jmrt.2021.07.137. 
  29. Eshelby, J.D. (1957), "The determination of the elastic field of an ellipsoidal inclusion, and related problems", Proc. Math. Phys. Eng. Sci., 241(1226), 376-396. https://doi.org/10.1098/rspa.1957.0133. 
  30. Freeman, C.L., Harding, J.H., Cooke, D.J., Elliott, J.A., Lardge, J.S. and Duffy, D.M. (2007), "New forcefields for modeling biomineralization processes", J. Phys. Chem, 111(32), 11943-11951. https://doi.org/10.1021/jp071887p. 
  31. Fladr, J., Bily, P. and Broukalova, I. (2019), "Evaluation of steel fiber distribution in concrete by computer aided image analysis", Compos. Mater. Eng., 1(1), 49-70. https://doi.org/10.12989/cme.2019.1.1.049. 
  32. Gadayev, A. and Kodess, B. (1999), "By-product materials in cement clinker manufacturing", Cement Concrete Res., 29(2), 187-191. https://doi.org/10.1016/S0008-8846(98)00094-5. 
  33. Gamal, S.M.A. and Selim, F.A. (2017), "Utilization of some industrial wastes for eco-friendly cement production", Sustainab. Mater. Technol., 12, 9-17. https://doi.org/10.1016/j.susmat.2017.03.001. 
  34. Gmira, A., Zabat, M., Pellenq, R.M. and Van Damme, H. (2004), "Microscopic physical basis of the poromechanical behavior of cement-based materials", Mater. Struct., 37(1), 3-14. https://doi.org/10.1007/BF02481622. 
  35. Gobel, L., Konigsberger, M., Osburg, A. and Pichler, B. (2018), "Viscoelastic behavior of polymer-modified cement pastes: Insight from downscaling short-term macroscopic creep tests by means of multiscale modeling", Appl. Sci., 8(4), 487. https://doi.org/10.3390/app8040487. 
  36. Gobel, L., Lahmer, T. and Osburg, A. (2017), "Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics", Eur. J. Mech. A-Solids, 65, 14-29. https://doi.org/10.1016/j.euromechsol.2017.02.008. 
  37. Gupta, S., Singh, D., Gupta, T. and Chaudhary, S. (2022), "Effect of limestone calcined clay cement (LC3) on the fire safety of concrete structures", Comput. Concrete, 29(4), 263-278. https://doi.org/10.12989/cac.2022.29.4.263. 
  38. Haeri, H., Sarfarazi, V., Zhu, Z.M. and Fatehimarji, M. (2019), "Investigation of shear behavior of soil-concrete interface", Smart. Struct. Syst., 23(1), 81-90. https://doi.org/10.12989/sss.2019.23.1.081. 
  39. Haile, B.F., Jin, D.W., Yang, B., Park, S. and Lee, H.K. (2019), "Multi-level homogenization for the prediction of the mechanical properties of ultra-high-performance concrete", Constr. Build. Mater., 229, 116797. https://doi.org/10.1016/j.conbuildmat.2019.116797. 
  40. Han, J., Liu, W., Wang, S., Du, D., Xu, F., Li, W. and De Schutter, G. (2016), "Effects of crack and ITZ and aggregate on carbonation penetration based on 3D micro X-ray CT microstructure evolution", Constr. Build. Mater., 128, 256-271. https://doi.org/10.1016/j.conbuildmat.2016.10.062. 
  41. He, D., Ou, Z., Qin, C., Deng, T., Yin, J. and Pu, G. (2020), "Understanding the catalytic acceleration effect of steam on CaCO3 decomposition by density function theory", Chem. Eng. Sci., 379, 122348. https://doi.org/10.1016/j.cej.2019.122348. 
  42. Honorio, T., Carasek, H. and Cascudo, O. (2020), "Electrical properties of cement-based materials: Multiscale modeling and quantification of the variability", Constr. Build. Mater., 245, 118461. https://doi.org/10.1016/j.conbuildmat.2020.118461. 
  43. Horstemeyer, M.F. (2009), Multiscale Modeling: A Review, Springer, New York, NY,
  44. Huang, Y., Hu, K.X., Wei, X. and Chandra, A. (1994), "A generalized self-consistent mechanics method for composite materials with multiphase inclusions", J. Mech. Phys., 42(3), 491-504. https://doi.org/10.1016/0022-5096(94)90028-0. 
  45. Isleem, H.F., Augustino, D.S., Mohammed, A.S., Najemalden, A.M., Jagadesh, P., Qaidi, S. and Sabri, M.M.S. (2023), "Finite element, analytical, artificial neural network models for carbon fibre reinforced polymer confined concrete filled steel columns with elliptical cross sections", Front. Mater., 9, 1115394. https://doi.org/10.3389/fmats.2022.1115394. 
  46. Jaf, D.K.I., Abdulrahman, P.I., Mohammed, A.S., Kurda, R., Qaidi, S.M. and Asteris, P.G. (2023), "Machine learning techniques and multi-scale models to evaluate the impact of silicon dioxide (SiO2) and calcium oxide (CaO) in fly ash on the compressive strength of green concrete", Constr. Build. Mater., 400, 132604. https://doi.org/10.1016/j.conbuildmat.2023.132604. 
  47. Jang, D., Bang, J., Yoon, H.N., Seo, J., Jung, J., Jang, J.G. and Yang, B. (2022), "Deep learning-based LSTM model for prediction of long-term piezoresistive sensing performance of cement-based sensors incorporating multi-walled carbon nanotube", Comput. Concrete, 30(5), 301-310. https://doi.org/10.12989/cac.2022.30.5.301. 
  48. Ju, J.W. and Chen, T.M. (1994), "Micromechanics and effective elastoplastic behavior of two-phase metal matrix composites", J. Eng. Mater. Technol., 116(3), 310-318. https://doi.org/10.1115/1.2904293. 
  49. Jung, J., Kim, Y., Park, J. and Ryu, S. (2022), "Transfer learning for enhancing the homogenization-theory-based prediction of elasto-plastic response of particle/short fiber-reinforced composites", Compos. Struct., 285, 115210. https://doi.org/10.1016/j.compstruct.2022.115210. 
  50. Kanoute, P., Boso, D.P., Chaboche, J.L. and Schrefler, B.A. (2009), "Multiscale methods for composites: A review", Arch. Comput. Method Eng., 16(1), 31-75. https://doi.org/10.1007/s11831-008-9028-8. 
  51. Kil, T., Bae, J.H., Yang, B. and Lee, H.K. (2023), "Multi-level micromechanics-based homogenization for the prediction of damage behavior of multiscale fiber-reinforced composites", Compos. Struct., 303, 116332. https://doi.org/10.1016/j.compstruct.2022.116332. 
  52. Kim, H.K., Lim, Y., Tafesse, M., Kim, G.M. and Yang, B. (2022), "Micromechanics-integrated machine learning approaches to predict the mechanical behaviors of concrete containing crushed clay brick aggregates", Constr. Build. Mater., 317, 125840. https://doi.org/10.1016/j.conbuildmat.2021.125840. 
  53. Kirkpatrick, R.J., Kalinichev, A. and Yu, P. (2001), "Chloride binding to cement phases: Exchange isotherm, 35Cl NMR and molecular dynamics modeling studies", Mater. Sci. Eng. C, 2001, 77-92. 
  54. Konigsberger, M., Hellmich, C. and Pichler, B. (2016), "Densification of CSH is mainly driven by available precipitation space, as quantified through an analytical cement hydration model based on NMR data", Cement Concrete Res., 88, 170-183. https://doi.org/10.1016/j.cemconres.2016.04.006. 
  55. Lardge, J.S., Duffy, D.M. and Gillan, M.J. (2009), "Investigation of the interaction of water with the calcite (10.4) surface using ab initio simulation", J. Phys. Chem. C, 113(17), 7207-7212. https://doi.org/10.1021/jp806109y. 
  56. Lee, H.K. and Pyo, S.H. (2008), "Multi-level modeling of effective elastic behavior and progressive weakened interface in particulate composites", Compos. Sci. Technol., 68(2), 387-397. https://doi.org/10.1016/j.compscitech.2007.06.026. 
  57. Lee, H.K. and Song, S.Y. (2010), "Influence of fiber volume fraction and fiber type on mechanical properties of FRLACC", J. Reinf. Plast. Comp., 29(7), 1089-1098. https://doi.org/10.1177/0731684409103702. 
  58. Lee, S. and Ryu, S. (2018), "Theoretical study of the effective modulus of a composite considering the orientation distribution of the fillers and the interfacial damage", Eur. J. Mech., 72, 79-87. https://doi.org/10.1016/j.euromechsol.2018.02.008. 
  59. Lee, S.R. and Ryu, S.H. (2020), "A review of mean-field homogenization for effective physical properties of particle-reinforced composites", Compos. Res., 33(2), 81-89. https://doi.org/10.7234/composres.2020.33.2.081. 
  60. Li, S. and Wang, G. (2018), Introduction to Micromechanics and Nanomechanics, (2nd Edition), World Scientific Publishing Company, Singapore. 
  61. Liang, S., Wei, Y. and Wu, Z. (2017), "Multiscale modeling elastic properties of cement-based materials considering imperfect interface effect", Constr. Build. Mater., 154, 567-579. https://doi.org/10.1016/j.conbuildmat.2017.07.196. 
  62. Liu, W.K., Karpov, E.G., Zhang, S. and Park, H.S. (2004), "An introduction to computational nanomechanics and materials", Comput. Method Appl. Mech. Eng., 193(17-20), 1529-1578. https://doi.org/10.1016/j.cma.2003.12.008. 
  63. Lu, S., Landis, E.N. and Keane, D.T. (2006), "X-ray microtomographic studies of pore structure and permeability in Portland cement concrete", Mater. Struct., 39(6), 611-620. https://doi.org/10.1617/s11527-006-9099-7. 
  64. Ludwig, H.M. and Zhang, W. (2015), "Research review of cement clinker chemistry", Cement Concrete Res., 78, 24-37. https://doi.org/10.1016/j.cemconres.2015.05.018. 
  65. Lurie, S., Solyaev, Y. and Shramko, K. (2018), "Comparison between the Mori-Tanaka and generalized self-consistent methods in the framework of anti-plane strain inclusion problem in strain gradient elasticity", Mech. Mater., 122, 133-144. https://doi.org/10.1016/j.mechmat.2018.04.010. 
  66. Ma, H.M. and Gao, X.L. (2014), "A new homogenization method based on a simplified strain gradient elasticity theory", Acta Mech., 225(4), 1075-1091. https://doi.org/10.1007/s00707-013-1059-z. 
  67. Ma, H. and Li, Z. (2013), "Realistic pore structure of Portland cement paste: Experimental study and numerical simulation", Comput. Concrete, 11(4), 317-336. https://doi.org/10.12989/cac.2013.11.4.317. 
  68. Maekawa, K. (2008), Multi-scale Modeling of Structural Concrete, CRC Press, London, UK. 
  69. Masoero, E. (2018), Mesoscale Mechanisms of Cement Hydration: BNG Model and Particle Simulations, Springer, New York, NY, USA. 
  70. Mishra, R.K., Kanhaiya, K., Winetrout, J.J., Flatt, R.J. and Heinz, H. (2021), "Force field for calcium sulfate minerals to predict structural, hydration, and interfacial properties", Cement Concrete Res., 139, 106262. https://doi.org/10.1016/j.cemconres.2020.106262. 
  71. Mishra, R.K., Mohamed, A.K., Geissbuhler, D., Manzano, H., Jamil, T., Shahsavari, R., Kalinichev, A.G., Galmarini, S., Tao, L., Heinz, H., Pellenq, R., van Duin, A.C.T., Parker, S.C., Flatt, R.J. and Bowen, P. (2017), "Cemff: A force field database for cementitious materials including validations, applications and opportunities", Cement Concrete Res., 102, 68-89. https://doi.org/10.1016/j.cemconres.2017.09.003. 
  72. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall. Mater., 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3. 
  73. Mura, T. (2013), Micromechanics of Defects in Solids, Springer, New York, NY, USA. 
  74. Mustafa, A., Mahmoud, M.A., Abdulraheem, A., Furquan, S.A., Al-Nakhli, A. and BaTaweel, M. (2019), "Comparative analysis of static and dynamic mechanical behavior for dry and saturated cement mortar", Mater., 12(20), 3299. https://doi.org/10.3390/ma12203299. 
  75. Mutisya, S.M., de Almeida, J.M. and Miranda, C.R. (2017), "Molecular simulations of cement based materials: A comparison between first principles and classical force field calculations", Comput. Mater. Sci., 138, 392-402. https://doi.org/10.1016/j.commatsci.2017.07.009. 
  76. Mutisya, S.M. and Kalinichev, A.G. (2021), "Carbonation reaction mechanisms of portlandite predicted from enhanced ab initio molecular dynamics simulations", Miner., 11(5), 509. https://doi.org/10.3390/min11050509. 
  77. Nasr, M.S., Shubbar, A.A., Abed, Z.A.A.R. and Ibrahim, M.S. (2020), "Properties of eco-friendly cement mortar contained recycled materials from different sources", J. Build. Eng., 31, 101444. https://doi.org/10.1016/j.jobe.2020.101444. 
  78. Nayak, A., Bajaj, A.S., Jain, A., Khandelwal, A. and Tiwari, H. (2013), "Replacement of steel by bamboo reinforcement", J. Mech. Civil Eng., 8(1), 50-61.  https://doi.org/10.9790/1684-0815061
  79. Palkovic, S.D. and Buyukozturk, O. (2020), "Multiscale modeling of cohesive-frictional strength properties in cementitious materials", Handbook of Materials Modeling, Springer International Publishing, Cham, Switzerland. 
  80. Pan, T., Xia, K. and Wang, L. (2010), "Chloride binding to calcium silicate hydrates (CSH) in cement paste: A molecular dynamics analysis", Int. J. Pavement Eng., 11(5), 367-379. https://doi.org/10.1080/10298436.2010.488732. 
  81. Papadopoulos, V. and Impraimakis, M. (2017), "Multiscale modeling of carbon nanotube reinforced concrete", Compos. Struct., 182, 251-260. https://doi.org/10.1016/j.compstruct.2017.09.061. 
  82. Patnaik, S.S., Swain, A. and Roy, T. (2020), "Creep compliance and micromechanics of multi-walled carbon nanotubes based hybrid composites", Compos. Mater. Eng., 3(2), 117-134. https://doi.org/10.12989/cme.2020.2.2.141. 
  83. Pegado, L., Labbez, C. and Churakov, S.V. (2014), "Mechanism of aluminium incorporation into C-S-H from ab initio calculations", J. Mater. Chem. A, 2(10), 3477-3483. https://doi.org/10.1039/C3TA14597B. 
  84. Pichler, C. and Lackner, R. (2008). "A multiscale creep model as basis for simulation of early-age concrete behavior", Comput. Concrete, 5(4), 295-328. https://doi.org/10.12989/cac.2008.5.4.295. 
  85. Piro, N.S., Mohammed, A.S., Hamad, S.M. and Kurda, R. (2022), "Electrical conductivity, microstructures, chemical compositions, and systematic multivariable models to evaluate the effect of waste slag smelting (pyrometallurgical) on the compressive strength of concrete", Environ. Sci. Pollut. Res., 29(45), 68488-68521. https://doi.org/10.1007/s11356-022-20518-1. 
  86. Piro, N.S., Salih, A., Hamad, S.M. and Kurda, R. (2021), "Comprehensive multiscale techniques to estimate the compressive strength of concrete incorporated with carbon nanotubes at various curing times and mix proportions", J. Mater. Res. Technol., 15, 6506-6527. https://doi.org/10.1016/j.jmrt.2021.11.028. 
  87. Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039. 
  88. Qi, C., Manzano, H., Spagnoli, D., Chen, Q. and Fourie, A. (2021), "Initial hydration process of calcium silicates in Portland cement: A comprehensive comparison from molecular dynamics simulations", Cement Concrete Res., 149, 106576. https://doi.org/10.1016/j.cemconres.2021.106576. 
  89. Qin, R. and Lau, D. (2019), "Evaluation of the moisture effect on the material interface using multiscale modeling", Multiscale Sci. Eng., 1(2), 108-118. https://doi.org/10.1007/s42493-018-00008-8. 
  90. Qomi, M.A., Krakowiak, K.J., Bauchy, M., Stewart, K.L., Shahsavari, R., Jagannathan, D., Brommer, D.B., Baronnet, A., Buehler, M.J., Yip, S., Ulm, F.J, Vliet, K.J. and Van Vliet, K.J. (2014), "Combinatorial molecular optimization of cement hydrates", Nat. Commun., 5(1), 1-10. https://doi.org/10.1038/ncomms5960. 
  91. Salih, A., Rafiq, S., Mahmood, W., Hind, A.D., Noaman, R., Ghafor, K. and Qadir, W. (2020), "Systemic multi-scale approaches to predict the flowability at various temperature and mechanical properties of cement paste modified with nanocalcium carbonate", Constr. Build. Mater., 262, 120777. https://doi.org/10.1016/j.conbuildmat.2020.120777. 
  92. Salih, A., Rafiq, S., Sihag, P., Ghafor, K., Mahmood, W. and Sarwar, W. (2021), "Systematic multiscale models to predict the effect of high-volume fly ash on the maximum compression stress of cement-based mortar at various water/cement ratios and curing times", Measure., 171, 108819. https://doi.org/10.1016/j.measurement.2020.108819. 
  93. Scrivener, K., Snellings, R. and Lothenbach, B. (2018), A Practical Guide to Microstructural Analysis of Cementitious Materials, CRC Press, Boca Raton, FL, USA. 
  94. Seigneur, N., De Windt, L., Poyet, S., Socie, A., and Dauzeres, A. (2022), "Modelling of the evolving contributions of gas transport, cracks and chemical kinetics during atmospheric carbonation of hydrated C3S and CSH pastes", Cement Concrete Res., 160, 106906. https://doi.org/10.1016/j.cemconres.2022.106906. 
  95. Senftle, T.P., Hong, S., Islam, M.M., Kylasa, S.B., Zheng, Y., Shin, Y.K., Junkermeier, C., Engel-Herbert, R., Janic, M.J., Aktulga, H.M., Verstraelen, T., Grama, A. and Van Duin, A.C. (2016), "The ReaxFF reactive force-field: Development, applications and future directions", Comput. Mater. Sci., 2(1), 1-14. https://doi.org/10.1038/npjcompumats.2015.11. 
  96. Seo, J., Yoon, H.N., Kim, S., Wang, Z., Kil, T. and Lee, H.K. (2021), "Characterization of reactive MgO-modified calcium sulfoaluminate cements upon carbonation", Cement Concrete Res., 146, 106484. https://doi.org/10.1016/j.cemconres.2021.106484. 
  97. Shahsavari, R., Pellenq, R.J.M. and Ulm, F.J. (2011), "Empirical force fields for complex hydrated calcio-silicate layered materials", Phys. Chem., 13(3), 1002-1011. https://doi.org/10.1039/C0CP00516A. 
  98. Shakouri, M. (2021), "Analytical solution for stability analysis of joined cross-ply thin laminated conical shells under axial compression", Compos. Mater. Eng., 3(2), 117-134. https://doi.org/10.12989/cme.2021.3.2.117. 
  99. Shchygol, G., Yakovlev, A., Trnka, T., Van Duin, A.C. and Verstraelen, T. (2019), "ReaxFF parameter optimization with Monte-Carlo and evolutionary algorithms: Guidelines and insights", J. Chem. Theory Comput., 15(12), 6799-6812. https://doi.org/10.1021/acs.jctc.9b00769. 
  100. Shin, H., Chang, S., Yang, S., Youn, B.D. and Cho, M. (2016), "Statistical multiscale homogenization approach for analyzing polymer nanocomposites that include model inherent uncertainties of molecular dynamics simulations", Compos. B. Eng., 87, 120-131. https://doi.org/10.1016/j.compositesb.2015.09.043. 
  101. Sprik, M., Hutter, J. and Parrinello, M. (1996), "Ab initio molecular dynamics simulation of liquid water: Comparison of three gradient-corrected density functionals", J. Chem. Phys., 105(3), 1142-1152. https://doi.org/10.1063/1.471957. 
  102. Stora, E., Bary, B., He, Q.C., Deville, E. and Montarnal, P. (2009), "Modelling and simulations of the chemo-mechanical behaviour of leached cement-based materials: Leaching process and induced loss of stiffness", Cement Concrete Res., 39(9), 763-772. https://doi.org/10.1016/j.cemconres.2009.05.010. 
  103. Sun, W., Wei, Y., Wang, D. and Wang, L. (2013), Review of Multiscale Characterization Techniques and Multiscale Modeling Methods for Cement Concrete: From Atomistic to Continuum, Springer, New York, NY, USA. 
  104. Unger, J.F. and Eckardt, S. (2011), "Multiscale modeling of concrete: From mesoscale to macroscale", Arch. Comput., 18, 341-393. https://doi.org/10.1007/s11831-011-9063-8. 
  105. Wu, W., Al-Ostaz, A., Cheng, A.H.D. and Song, C.R. (2011), "Computation of elastic properties of Portland cement using molecular dynamics", J. Nanomech. Micromech., 1(2), 84-90. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000026. 
  106. Xie, T. and Biernacki, J.J. (2011), "The origins and evolution of cement hydration models", Comput. Concrete, 8(6), 647-675. https://doi.org/10.12989/cac.2011.8.6.647. 
  107. Yang, B.J., Jang, J.U., Eem, S.H. and Kim, S.Y. (2017), "A probabilistic micromechanical modeling for electrical properties of nanocomposites with multi-walled carbon nanotube morphology", Compos. Part A: Appl. Sci. Manuf., 92, 108-117. https://doi.org/10.1016/j.compositesa.2016.11.009. 
  108. Yang, B.J., Kim, B.R. and Lee, H.K. (2012), "Predictions of viscoelastic strain rate dependent behavior of fiber-reinforced polymeric composites", Compos. Struct., 94(4), 1420-1429. https://doi.org/10.1016/j.compstruct.2011.11.016. 
  109. Yang, Y., Patel, RA., Churakov, S. V., Prasianakis, N.I., Kosakowski, G. and Wang, M. (2019), "Multiscale modeling of ion diffusion in cement paste: Electrical double layer effects", Cement Concrete Compos., 96, 55-65. https://doi.org/10.1016/j.cemconcomp.2018.11.008. 
  110. Yildiz, M.K., Gerengi, H. and Kocak, Y. (2022), "The influence of L-arginine as an additive on the compressive strength and hydration reaction of Portland cement", Comput. Concrete, 29(4), 237-246. https://doi.org/10.12989/cac.2022.29.4.237. 
  111. Yu, E. and Chung, L. (2012), "Seismic damage detection of a reinforced concrete structure by finite element model updating", Smart. Struct. Syst., 9(3), 253-271. https://doi.org/10.12989/sss.2012.9.3.253. 
  112. Zeng, Q., Li, K., Fen-Chong, T. and Dangla, P. (2016), "Pore structure of cement pastes through NAD and MIP analysis", Adv. Cement Res., 28(1), 23-32. https://doi.org/10.1680/adcr.14.00109. 
  113. Zhang, T., Zhu, H., Zhou, L. and Yan, Z. (2021), "Multi-level micromechanical analysis of elastic properties of ultra-high performance concrete at high temperatures: Effects of imperfect interface and inclusion size", Compos. Struct., 262, 113548. https://doi.org/10.1016/j.compstruct.2021.113548. 
  114. Zhou, S. and Ju, J.W. (2021), "A chemo-micromechanical damage model of concrete under sulfate attack", Int. J. Damage Mech., 30(8), 1213-1237. https://doi.org/10.1177/1056789521997916. 
  115. Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P. and Zhu, J.Z. (1977), The Finite Element Method, (3rd Edition), McGraw-hill, London, UK.