Acknowledgement
The author would like to acknowledge National Agency of Petroleum, Natural Gas and Biofuels (ANP) and Funding Authority for Studies and Projects (FINEP) for the funding of a research scholarship through PRH-9.1, as well as Brazilian National Council for Scientific and Technological Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES) for their support to this work.
References
- Ayhan, B., Jehel, P., Brancherie, D. and Ibrahimbegovic, A. (2013), "Coupled damage-plasticity model for cyclic loading: Theoretical formulation and numerical implementation", Eng. Struct., 50, 30-42. https://doi.org/10.1016/j.engstruct.2012.11.012.
- Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Constr., 16(3), 155-177. https://doi.org/10.1007/BF02486267.
- Carol, I., Rizzi, E. and Willam, K. (2001), "On the formulation of anisotropic elastic degradation. I. Theory based on a pseudo-logarithmic damage tensor rate", Int. J. Solid. Struct., 38(4), 491-518. https://doi.org/10.1016/S0020-7683(00)00030-5.
- da Costa, G.L.X., de Faria Telles, J.C., Fairbairn, E.D.M.R., Luiz, F. and Ribeiro, B. (2020), "Thermo-chemo-mechanical analysis of concrete structures considering aging and damage", XLI Ibero-Latin American Congress on Computational Methods in Engineering, Foz do Iguacu/PR, Brazil, November.
- da Costa, G.L.X., Brant, C.A.C., de Andrade, R.G.M. and Fairbairn, E.D.M.R. (2021), "Finite element analyses of mesh-objectivity for smeared, damage and discrete models applied to concrete cracking", Proceedings of the Ibero-Latin-American Congress on Computational Methods in Engineering, Rio de Janeiro, Brazil, November.
- da Costa, G.L.X., Brant, C.A.C., Mota, M.T., de Andrade, R.G.M., Fairbairn, E.D.M.R. and Rossi, P. (2023), "Investigating spurious cracking in finite element models for concrete fracture", Comput. Concrete, 31(2), 151-161. https://doi.org/10.12989/cac.2023.31.2.151.
- Daniels, H.E. (1945), "The statistical theory of the strength of bundles of threads", Proc. Royal Soc. London, 183(995), 405-435. https://doi.org/10.1098/rspa.1945.0011.
- de Borst, R., Crisfield, M.A., Remmers, J.J. and Verhoosel, C.V. (2012), Nonlinear Finite Element Analysis of Solids and Structures, John Wiley & Sons, Hoboken, NJ, USA.
- de Borst, R. and Nauta, P. (1985), "Non-orthogonal cracks in a smeared finite element model", Eng. Comput., 2(1), 35-46. https://doi.org/10.1108/eb023599.
- Geuzaine, C. and Remacle, J.F. (2009), "Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities", Int. J. Numer. Method. Eng., 79(11), 1309-1331. https://doi.org/10.1002/NME.2579.
- Gopalaratnam, V.S. and Shah, S.P. (1985), "Softening response of plain concrete in direct tension", ACI J. Proc., 82(3), 310-323. https://doi.org/10.14359/10338.
- Gylltoft, K. (1983), "Fracture mechanics models for fatigue in concrete structures", Doctoral Dissertation, Lulea University of Technology, Lulea, Sweden.
- Hordijk, D.A. (1991), "Local approach to fatigue", Ph.D. Thesis, Delft University and Technology, Delft, Netherlands.
- Ibrahimbegovic, A., Markovic, D. and Gatuingt, F. (2003), "Constitutive model of coupled damage-plasticity and its finite element implementation", Revue Eur. Elem., 12(4), 381-405. https://doi.org/10.3166/reef.12.381-405.
- Jia, M., Wu, Z., Rena, C.Y. and Zhang, X. (2021), "Residual fracture energy of concrete suffering from fatigue loading", Eng. Fract. Mech., 255, 107956. https://doi.org/10.1016/j.engfracmech.2021.107956.
- Jirasek, M. (2011), "Damage and smeared crack models", Numerical Modeling of Concrete Cracking, Springer Vienna, Vienna, Austria.
- Kachanov, L.M. (1957), "Rupture time under creep conditions", Int. J. Fract., 97(1), 11-18. https://doi.org/10.1023/A:1018671022008
- Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
- Lucconi, B., Oller, S. and Danesi, R. (1996), "Coupled plastic-damaged model", Comput. Method. Appl. Mech. Eng., 129(1-2), 81-89. https://doi.org/10.1016/0045-7825(95)00887-X.
- Murakami, S. (2012), Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture, Springer Science & Business Media, Berlin, Germany.
- Neuner, M., Hofer, P. and Hofstetter, G. (2022), "On the prediction of complex shear dominated concrete failure by means of classical and higher order damage-plasticity continuum models", Eng. Struct., 251, 113506. https://doi.org/10.1016/j.engstruct.2021.113506.
- Nguyen, G.D. (2005), A Thermodynamic Approach to Constitutive Modelling of Concrete Using Damage Mechanics and Plasticity Theory, Oxford University, Oxford, UK.
- Oliver, J. (1989), "A consistent characteristic length for smeared cracking models", Int. J. Numer. Method. Eng., 28(2), 461-474. https://doi.org/10.1002/nme.1620280214.
- Peirce, F.T. (1926), "Tensile tests for cotton yarns:"the weakest link" theorems on the strength of long and of composite specimens", J. Textile Inst. Trans., 17, 355-368. https://doi.org/10.1080/19447027.1926.10599953.
- Rashid, Y.R. (1968), "Ultimate strength analysis of prestressed concrete pressure vessels", Nuclear Eng. Des., 7(4), 334-344. https://doi.org/10.1016/0029-5493(68)90066-6.
- Reinhardt, H.W. (1984), "Fracture mechanics of an elastic softening material like concrete", Heron, 29(2), 1984.
- Ren, X., Wang, Q., Ballarini, R. and Gao, X. (2020), "Coupled creep-damage-plasticity model for concrete under long-term loading", J. Eng. Mech., 146(5), https://doi.org/10.1061/(ASCE)EM.1943-7889.0001748.
- Salari, M.R., Saeb, S.A., Willam, K.J., Patchet, S.J. and Carrasco, R.C. (2004), "A coupled elastoplastic damage model for geomaterials", Comput. Method. Appl. Mech. Eng., 193(27-29), 2625-2643. https://doi.org/10.1016/j.cma.2003.11.013.
- Wang, G., Lu, D., Du, X., Zhou, X. and Cao, S. (2018), "A true 3D frictional hardening elastoplastic constitutive model of concrete based on a unified hardening/softening function", J. Mech. Phys. Solid., 119, 250-273. https://doi.org/10.1016/j.jmps.2018.06.019.
- Wang, G., Lu, D., Zhou, X., Wu, Y., Du, X. and Xiao, Y. (2020), "A stress-path-independent damage variable for concrete under multiaxial stress conditions", Int. J. Solid. Struct., 206, 59-74. https://doi.org/10.1016/j.ijsolstr.2020.09.012.