DOI QR코드

DOI QR Code

An implicit damage-plastic model for concrete

  • Received : 2023.04.13
  • Accepted : 2023.10.04
  • Published : 2024.03.25

Abstract

This paper proposes a numerically-based methodology to implicitly model irreversible deformations in concrete through a damage model. Plasticity theory is not explicitly employed, although resemblances are still present. A scalar isotropic damage model is adopted and the damage variable is split in two: one contributing for stiffness degradation (cracking) and other contributing for irreversible deformations (plasticity). The proposed methodology is thermodynamically consistent as it consists in a damage model rewritten in different terms. Its Finite Element coding is presented, indicating that minor changes are necessary. It is also demonstrated that nonlinear algorithms are unnecessary to model concrete cracking and plasticity. Experimental data from direct tension and four-point bending tests under cyclic loading are compared to the proposed methodology. A numerical case study of a low-cycle fatigue is also presented. It can be concluded that the model is simple, feasible and capable to capture the essentials concerning cracking and plasticity.

Keywords

Acknowledgement

The author would like to acknowledge National Agency of Petroleum, Natural Gas and Biofuels (ANP) and Funding Authority for Studies and Projects (FINEP) for the funding of a research scholarship through PRH-9.1, as well as Brazilian National Council for Scientific and Technological Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES) for their support to this work.

References

  1. Ayhan, B., Jehel, P., Brancherie, D. and Ibrahimbegovic, A. (2013), "Coupled damage-plasticity model for cyclic loading: Theoretical formulation and numerical implementation", Eng. Struct., 50, 30-42. https://doi.org/10.1016/j.engstruct.2012.11.012.
  2. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Constr., 16(3), 155-177. https://doi.org/10.1007/BF02486267.
  3. Carol, I., Rizzi, E. and Willam, K. (2001), "On the formulation of anisotropic elastic degradation. I. Theory based on a pseudo-logarithmic damage tensor rate", Int. J. Solid. Struct., 38(4), 491-518. https://doi.org/10.1016/S0020-7683(00)00030-5.
  4. da Costa, G.L.X., de Faria Telles, J.C., Fairbairn, E.D.M.R., Luiz, F. and Ribeiro, B. (2020), "Thermo-chemo-mechanical analysis of concrete structures considering aging and damage", XLI Ibero-Latin American Congress on Computational Methods in Engineering, Foz do Iguacu/PR, Brazil, November.
  5. da Costa, G.L.X., Brant, C.A.C., de Andrade, R.G.M. and Fairbairn, E.D.M.R. (2021), "Finite element analyses of mesh-objectivity for smeared, damage and discrete models applied to concrete cracking", Proceedings of the Ibero-Latin-American Congress on Computational Methods in Engineering, Rio de Janeiro, Brazil, November.
  6. da Costa, G.L.X., Brant, C.A.C., Mota, M.T., de Andrade, R.G.M., Fairbairn, E.D.M.R. and Rossi, P. (2023), "Investigating spurious cracking in finite element models for concrete fracture", Comput. Concrete, 31(2), 151-161. https://doi.org/10.12989/cac.2023.31.2.151.
  7. Daniels, H.E. (1945), "The statistical theory of the strength of bundles of threads", Proc. Royal Soc. London, 183(995), 405-435. https://doi.org/10.1098/rspa.1945.0011.
  8. de Borst, R., Crisfield, M.A., Remmers, J.J. and Verhoosel, C.V. (2012), Nonlinear Finite Element Analysis of Solids and Structures, John Wiley & Sons, Hoboken, NJ, USA.
  9. de Borst, R. and Nauta, P. (1985), "Non-orthogonal cracks in a smeared finite element model", Eng. Comput., 2(1), 35-46. https://doi.org/10.1108/eb023599.
  10. Geuzaine, C. and Remacle, J.F. (2009), "Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities", Int. J. Numer. Method. Eng., 79(11), 1309-1331. https://doi.org/10.1002/NME.2579.
  11. Gopalaratnam, V.S. and Shah, S.P. (1985), "Softening response of plain concrete in direct tension", ACI J. Proc., 82(3), 310-323. https://doi.org/10.14359/10338.
  12. Gylltoft, K. (1983), "Fracture mechanics models for fatigue in concrete structures", Doctoral Dissertation, Lulea University of Technology, Lulea, Sweden.
  13. Hordijk, D.A. (1991), "Local approach to fatigue", Ph.D. Thesis, Delft University and Technology, Delft, Netherlands.
  14. Ibrahimbegovic, A., Markovic, D. and Gatuingt, F. (2003), "Constitutive model of coupled damage-plasticity and its finite element implementation", Revue Eur. Elem., 12(4), 381-405. https://doi.org/10.3166/reef.12.381-405.
  15. Jia, M., Wu, Z., Rena, C.Y. and Zhang, X. (2021), "Residual fracture energy of concrete suffering from fatigue loading", Eng. Fract. Mech., 255, 107956. https://doi.org/10.1016/j.engfracmech.2021.107956.
  16. Jirasek, M. (2011), "Damage and smeared crack models", Numerical Modeling of Concrete Cracking, Springer Vienna, Vienna, Austria.
  17. Kachanov, L.M. (1957), "Rupture time under creep conditions", Int. J. Fract., 97(1), 11-18. https://doi.org/10.1023/A:1018671022008
  18. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
  19. Lucconi, B., Oller, S. and Danesi, R. (1996), "Coupled plastic-damaged model", Comput. Method. Appl. Mech. Eng., 129(1-2), 81-89. https://doi.org/10.1016/0045-7825(95)00887-X.
  20. Murakami, S. (2012), Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture, Springer Science & Business Media, Berlin, Germany.
  21. Neuner, M., Hofer, P. and Hofstetter, G. (2022), "On the prediction of complex shear dominated concrete failure by means of classical and higher order damage-plasticity continuum models", Eng. Struct., 251, 113506. https://doi.org/10.1016/j.engstruct.2021.113506.
  22. Nguyen, G.D. (2005), A Thermodynamic Approach to Constitutive Modelling of Concrete Using Damage Mechanics and Plasticity Theory, Oxford University, Oxford, UK.
  23. Oliver, J. (1989), "A consistent characteristic length for smeared cracking models", Int. J. Numer. Method. Eng., 28(2), 461-474. https://doi.org/10.1002/nme.1620280214.
  24. Peirce, F.T. (1926), "Tensile tests for cotton yarns:"the weakest link" theorems on the strength of long and of composite specimens", J. Textile Inst. Trans., 17, 355-368. https://doi.org/10.1080/19447027.1926.10599953.
  25. Rashid, Y.R. (1968), "Ultimate strength analysis of prestressed concrete pressure vessels", Nuclear Eng. Des., 7(4), 334-344. https://doi.org/10.1016/0029-5493(68)90066-6.
  26. Reinhardt, H.W. (1984), "Fracture mechanics of an elastic softening material like concrete", Heron, 29(2), 1984.
  27. Ren, X., Wang, Q., Ballarini, R. and Gao, X. (2020), "Coupled creep-damage-plasticity model for concrete under long-term loading", J. Eng. Mech., 146(5), https://doi.org/10.1061/(ASCE)EM.1943-7889.0001748.
  28. Salari, M.R., Saeb, S.A., Willam, K.J., Patchet, S.J. and Carrasco, R.C. (2004), "A coupled elastoplastic damage model for geomaterials", Comput. Method. Appl. Mech. Eng., 193(27-29), 2625-2643. https://doi.org/10.1016/j.cma.2003.11.013.
  29. Wang, G., Lu, D., Du, X., Zhou, X. and Cao, S. (2018), "A true 3D frictional hardening elastoplastic constitutive model of concrete based on a unified hardening/softening function", J. Mech. Phys. Solid., 119, 250-273. https://doi.org/10.1016/j.jmps.2018.06.019.
  30. Wang, G., Lu, D., Zhou, X., Wu, Y., Du, X. and Xiao, Y. (2020), "A stress-path-independent damage variable for concrete under multiaxial stress conditions", Int. J. Solid. Struct., 206, 59-74. https://doi.org/10.1016/j.ijsolstr.2020.09.012.