DOI QR코드

DOI QR Code

Predicting the maximum lateral load of reinforced concrete columns with traditional machine learning, deep learning, and structural analysis software

  • Pelin Canbay (Department of Computer Engineering, Kahramanmaras Sutcu Imam University) ;
  • Sila Avgin (Department of Civil Engineering, Kahramanmaras Sutcu Imam University) ;
  • Mehmet M. Kose (Department of Civil Engineering, Kahramanmaras Sutcu Imam University)
  • Received : 2023.01.30
  • Accepted : 2023.10.04
  • Published : 2024.03.25

Abstract

Recently, many engineering computations have realized their digital transformation to Machine Learning (ML)-based systems. Predicting the behavior of a structure, which is mainly computed with structural analysis software, is an essential step before construction for efficient structural analysis. Especially in the seismic-based design procedure of the structures, predicting the lateral load capacity of reinforced concrete (RC) columns is a vital factor. In this study, a novel ML-based model is proposed to predict the maximum lateral load capacity of RC columns under varying axial loads or cyclic loadings. The proposed model is generated with a Deep Neural Network (DNN) and compared with traditional ML techniques as well as a popular commercial structural analysis software. In the design and test phases of the proposed model, 319 columns with rectangular and square cross-sections are incorporated. In this study, 33 parameters are used to predict the maximum lateral load capacity of each RC column. While some traditional ML techniques perform better prediction than the compared commercial software, the proposed DNN model provides the best prediction results within the analysis. The experimental results reveal the fact that the performance of the proposed DNN model can definitely be used for other engineering purposes as well.

Keywords

References

  1. Abdi, H. and Williams, L.J. (2010), "Principal component analysis", WIREs Comput. Stat., 2(4), 433-459. https://doi.org/10.1002/wics.101.
  2. Aboutaha, R.S. and Machado, R.I. (1999), "Seismic resistance of steel-tubed high-strength reinforced-concrete column", J. Struct. Eng. (ASCE), 125(5), 485-494. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(48).
  3. Alzaben, G., Shatarat, N. and Katkhuda, H. (2022), "Comparison of capacity curves of reinforced concrete buildings using ADINA moment-curvature element and SAP2000 lumped plasticity model", Mech. Based Des. Struct. Mach., 2022, 1-18. https://doi.org/10.1080/15397734.2022.2126984.
  4. Amitsu, S., Shirai, N., Adachi, H. and Ono, A. (1991), "Deformation of reinforced concrete column with high or fluctuating axial force", Trans. Japan Concrete Inst., 13, 355-362.
  5. Arakawa, T., Arai, Y., Egashira, K. and Fujita, Y. (1982), "Effects of the rate of cyclic loading on the load-carrying capacity and inelastic behavior of reinforced concrete columns", Trans. Japan Concrete Inst., 4, 485-492.
  6. Arakawa, T., Arai, Y., Mizoguchi, M. and Yoshida, M. (1989), "Shear resisting behavior of short reinforced concrete columns under biaxial bending-shear", Trans. Japan Concrete Inst., 11, 317-324.
  7. Atalay, M.B. and Penzein, J. (1975), "The seismic behavior of critical regions of reinforced concrete components as influenced by moment, shear and axial force", Research Report No. EERC 75-19; College of Engineering, University of California, Berkeley, Berkeley, CA, USA.
  8. Azizinamini, A., Johal, L.S., Hanson, N.W., Musser, D.W. and Corley, W.G. (1988), "Effects of transverse reinforcement on seismic performance of columns-A partial parametric investigation", Project No. CR-9617; Construction Technology Laboratories, Skokie, IL, USA.
  9. Bayrak, O. (1998), "Seismic performance of rectilinearly confined high strength concrete columns", Ph.D. Thesis, University of Toronto, Toronto, Ontario, Canada.
  10. Bett, B.J., Klingner, R.E. and Jirsa J.O. (1985), "Behavior of strengthened and repaired reinforced concrete columns under cyclic deformation", PMFSEL Report No. 85-3; Department of Civil Engineering, The University of Texas at Austin, Austin, TX, USA.
  11. Bishop, C.M (2006), Pattern Recognition and Machine Learning, Springer, New York, NY, USA.
  12. Boukhatem, B., Kenai, S., Hamou, A.T., Ziou, D.J. and Ghrici, M. (2012), "Predicting concrete properties using neural networks (NN) with principal component analysis (PCA) technique", Comput. Concrete, 10(6), 557-573. https://doi.org/10.12989/cac.2012.10.6.557.
  13. Burba, F., Ferraty, F. and Vieu, P. (2009), "K-nearest neighbour method in functional nonparametric regression", J. Nonparamet. Stat., 21(4), 453-469. https://doi.org/10.1080/10485250802668909.
  14. Chen, T. and Guestrin, C. (2016), "XGBoost: A scalable tree boosting system", Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August.
  15. Chen, W., Xu, J., Dong, M., Yu, Y., Elchalakani, M. and Zhang, F. (2021), "Data-driven analysis on ultimate axial strain of FRP-confined concrete cylinders based on explicit and implicit algorithms", Compos. Struct., 268, 113904. https://doi.org/10.1016/j.compstruct.2021.113904.
  16. Dargan, S., Kumar, M., Ayyagari, M.R. and Kumar, G. (2020), "A survey of deep learning and its applications: A new paradigm to machine learning" Arch. Comput. Method. Eng., 27(4), 1071-1092. https://doi.org/10.1007/s11831-019-09344-w.
  17. Eberhard, M. (2003), Structural Performance Database, Pacific Earthquake Engineering Research Center, University of Washington, Seattle, WA, USA.
  18. Elwood, K.J. and Moehle, J.P. (2008), "Dynamic shear and axial-load failure of reinforced concrete columns", J. Struct. Eng. (ASCE), 134(7), 1189-1198. https://doi.org/10.1061/ASCE0733-94452008134:71189.
  19. Esaki, F. (1996), "Reinforcing effect of steel plate hoops on ductility of RC square column", Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, June.
  20. Feng, D.C., Liu, Z.T., Wang, X.D., Jiang, Z.M. and Liang, S.X. (2020), "Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm", Adv. Eng. Informat., 45, 101126. https://doi.org/10.1016/j.aei.2020.101126.
  21. Feng, D., Cetiner, B., Kakavand, M.R. and Taciroglu, E. (2021), "Data-driven approach to predict the plastic hinge length of reinforced concrete columns and its application", J. Struct. Eng., 147(2), 04020332. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002852.
  22. Friedman, J.H. (2001), "Greedy function approximation: A gradient boosting machine", Annal. Stat., 29(5), 1189-1232. https://doi.org/10.1214/aos/1013203451.
  23. Galeota, D., Giammatteo, M.M. and Marino, R. (1996), "Seismic resistance of high strength concrete columns", Procedings of the Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, June.
  24. Ghee, A.B. (1981), "Ductility of reinforced concrete bridge piers under seismic loading", Master Thesis, University of Canterbury, Christchurch, New Zealand.
  25. Gill, W.D. (1979), "Ductility of rectangular reinforced concrete columns with axial load", Master Thesis, University of Canterbury, Christchurch, New Zealand.
  26. Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep Learning, MIT Press, Cambridge, MA, USA.
  27. Harries, K., Ricles, J., Pessiki, S. and Sause, R. (2006), "Seismic retrofit of lap splices in nonductile square columns using carbon fiber-reinforced jackets", ACI Struct. J., 103(6), 874-884. https://doi.org/10.14359/18242.
  28. Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning Data Mining, Inference, and Prediction, 2nd Edition, Springer New York, NY, USA.
  29. Huang, C., Li, Y., Gu, Q. and Liu, J. (2022), "Machine learning-based hysteretic lateral force-displacement models of reinforced concrete columns", J. Struct. Eng., 148(3), 04021291. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003257.
  30. Imai, H. and Yamamoto, Y. (1986), "A study on causes of earthquake damage of izumi high school due to miyagi-ken-oki earthquake in 1978", Trans. Japan Concrete Inst., 8, 405-418.
  31. James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013), An Introduction to Statistical Learning, Springer New York, NY, USA.
  32. Joshi, A.V. (2019), Machine Learning and Artificial Intelligence, 1st Edition, Springer International Publishing, Cham, Switzerland.
  33. Kakavand, M.R., Sezen, H. and Taciroglu, E. (2021), "Data-driven models for predicting the shear strength of rectangular and circular reinforced concrete columns", J. Struct. Eng., 147(1), 04020301. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002875.
  34. Kanda, M., Shirai, N., Adachi, H. and Sato, T. (1988), "Analytical study on elasto-plastic hysteretic behaviors of reinforced concrete members", Trans. Japan Concrete Inst., 10, 257-264.
  35. Kent, D.C. and Park R. (1971), "Flexural members with confined concrete". J. Struct. Div., 97(ST7), 1969-1990. https://doi.org/10.1061/jsdeag.0002957.
  36. Kokusho S. (1973), A List of Past Experimental Results of Reinforced Concrete Columns, Building Research Institute, Tsukuba, Ibaraki, Japan.
  37. Kono, S. and Watanabe, F. (2000), "Damage evaluation of reinforced concrete columns under multiaxial cyclic loadings", The Second U.S. - Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, Sapporo, Hokkaido, Japan, September.
  38. Kuhn, M. and Johnson, K. (2019), Feature Engineering and Selection: A Practical Approach for Predictive Models, Taylor and Francis, Taylor and Francis, Oxfordshire, UK.
  39. Lagaros, N.D., Vasileiou, N. and Kazakis, G. (2019), "A C# code for solving 3D topology optimization problems using SAP2000", Opt. Eng., 20(1), 1-35. https://doi.org/10.1007/s11081-018-9384-7.
  40. Legeron, F. and Paultre, P. (2000), "Behavior of high-strength concrete columns under cyclic flexure and constant axial load", ACI Struct. J., 97(4), 591-601. https://doi.org/10.14359/7425.
  41. Li, H., Xiao, S. and Huo, L. (2008), "Damage investigation and analysis of engineering structures in the Wenchuan earthquake", J. Build. Struct., 29(4), 10-19.
  42. Liu, Y., Xiong, J., Wen, J. and Xiong, M. (2022), "Research on collapse ultimate load of fabricated reinforced concrete column and steel beam composite frame structure", Sci. Rep., 12(1), 13604. https://doi.org/10.1038/s41598-022-17936-z.
  43. Luo, H. and Paal, S.G. (2021), "Data-driven seismic response prediction of structural components", Earthq. Spectra, 38(2), 1382-1416. https://doi.org/10.1177/87552930211053345.
  44. Lynn, A.C. (2001), "Seismic evaluation of existing reinforced concrete building", Earthq. Spectra, 12(4), 715-739. https://doi.org/10.1193/1.1585907.
  45. Mander, J.B., Priestley, M.J.N. and Park, R., (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Div., 114(8), 1804-1826. https://doi.org/10.1061/(asce)0733-9445(1988)114:8(1804).
  46. Mangalathu, S. and Jeon, J.S. (2019), "Machine learning-based failure mode recognition of circular reinforced concrete bridge columns: Comparative study", J. Struct. Eng., 145(10), 04019104. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002402.
  47. Matamoros, A.B. (1999), "Study of drift limits for high-strength concrete columns", Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
  48. Melek, M. and Wallace, J.W. (2004), "Cylic behavior of columns with short lap splices", ACI Struct. J., 101(6), 802-811. https://doi.org/10.14359/13455.
  49. Mo, Y.L. and Wang, S.J. (2000), "Seismic behavior of RC columns with various tie configurations", J. Struct. Eng., 126(10), 1122-1130. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1122).
  50. Muguruma, H., Watanabe, F. and Komuro, T. (1989), "Applicability of high strength concrete to reinforced concrete ductile column", Trans. Japan Concrete Inst., 11, 309-316.
  51. Nagasaka, T. (1982), "Effectiveness of steel fiber as web reinforcement in reinforced concrete columns", Trans. Japan Concrete Inst., 4, 493-500.
  52. Ni, X., Xiong, Q., Kong, Q. and Yuan, C. (2022), "Deep hystereticnet to predict hysteretic performance of RC columns against cyclic loading", Eng. Struct., 273, 115103. https://doi.org/10.1016/j.engstruct.2022.115103.
  53. Ning, C., Wang, M. and Yu, X. (2022), "Failure-mode-independent prediction model for the peak strength of reinforced concrete columns using Bayesian neural network: A probabilistic approach", Adv. Struct. Eng., 25(9), 1923-1942. https://doi.org/10.1177/13694332221081187.
  54. Nosho, K., Stanton, J. and MacRae, G. (1996), "Retrofit of rectangular reinforced concrete columns using tonen forca tow sheet carbon fiber wrapping", Report No. SGEM 96-2; Department of Civil Engineering, University of Washington, Seattle, WA, USA.
  55. Ohno, T. and Nishioka, T. (1984), "An experimental study on energy absorption capacity of columns in reinforced concrete structures", Doboku Gakkai Ronbunshu, 1984(350), 23-33. https://doi.org/10.2208/jscej.1984.350_23
  56. Ohue, M., Morimoto, H., Fujii, S. and Morita, S. (1985), "The behavior of RC short columns failing in splitting bond-shear under dynamic lateral loading", Trans. Japan Concrete Inst., 7, 293-300.
  57. Ono, A., Shirai, N., Adachi, H. and Sakamaki, Y. (1989), "Elastoplastic behavior of reinforced concrete column with fluctuating axial force", Trans. Japan Concrete Inst., 11, 239-246.
  58. Ousalem, H., Kabeyasawa, T., Tasai, A. and Iwamoto, J. (2003), "Effect of hysteretic reversals on lateral and axial capacities of reinforced concrete columns", 5th US-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, PEER Report 2003, Hakone, Japan, September.
  59. Ousalem, H., Kabeyasawa, T., Tasai, A. and Ohsugi, Y. (2002), "Experimental study on seismic behavior of reinforced concrete columns under constant and variable axial loadings", Proc. Japan Concrete Inst., 24(2), 229-234.
  60. Pandey, G.R. and Mutsuyoshi, H. (2005), "Seismic performance of reinforced concrete piers with bond-controlled reinforcements", ACI Struct. J., 102(2), 295-304. https://doi.org/10.14359/14281.
  61. Park, R. and Paulay, T. (1990), "Use of interlocking spirals for transverse reinforcement in bridge columns", Strength Ductil. Concrete Substruct. Bridges, 84(1), 77-92.
  62. Paultre, P., Legeron, F. and Mongeau, D. (2001), "Influence of concrete strength and transverse reinforcement yield strength on behavior of high-strength concrete columns", ACI Struct. J., 98(4), 490-501. https://doi.org/10.14359/10292.
  63. Priestley, M.J.N., Seible, F., Xiao, Y. and Verma, R. (1994), "Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength-Part 1: Theoretical considerations and test design", ACI Struct. J., 91(4), 394-405. https://doi.org/10.14359/9885.
  64. Pujol, S. (2002), "Drift capacity of reinforced concrete columns subjected to displacement reversals", Ph.D. Thesis, Purdue University, West Lafayette, IN, USA.
  65. Qi, Y., Han, X. and Ji, J. (2013), "Failure mode classification of reinforced concrete column using Fisher method", J. Central South Univ., 20(10), 2863-2869. https://doi.org/10.1007/s11771-013-1807-1.
  66. Rasmussen, C.E. and Williams, C.K. (2005), Gaussian Processes for Machine Learning, MIT Press, Cambridge, MA, USA.
  67. Saatcioglu, M. and Mongi, G. (1999), "Confinement of reinforced concrete columns with welded reinforcement grids", ACI Struct. J., 96(1), 29-39. https://doi.org/10.14359/593.
  68. Saatcioglu, M. and Ozcebe, G. (1989), "Response of reinforced concrete columns to simulated seismic loading", ACI Struct. J., 86, 3-12. https://doi.org/10.14359/2607.
  69. Saatcioglu, M. and Razvi, S.R. (1992), "Strength and ductility of confined concrete", J. Struct. Eng., 108(12), 2703-2723. https://doi.org/10.1061/(asce)0733-9445(1992)118:6(1590).
  70. Sakai, Y., Hibi, J., Otani, S. and Aoyama, H. (1990), "Experimental study on flexural behavior of reinforced concrete columns using high-strength concrete", Trans. Japan Concrete Inst., 12, 323-330.
  71. Schmidhuber, J. (2015), "Deep learning in neural networks: An overview", Neural Netw., 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
  72. Sezen, H. (2000), "Seismic behavior and modeling of reinforced concrete building columns", Ph.D. Thesis, University of California, Berkeley, Berkeley, CA, USA.
  73. Sharif, M.R. and Zavareh, S.M.R.S.T. (2021), "Predictive modeling of the lateral drift capacity of circular reinforced concrete columns using an evolutionary algorithm", Eng. Comput., 37(2), 1579-1591. https://doi.org/10.1007/s00366-019-00904-z.
  74. Smola, A.J. and Scholkopf, B. (2004), "A tutorial on support vector regression", Stat. Comput., 14(3), 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88.
  75. Soesianawati, M.T. (1986), "Limited ductility design of reinforced concrete columns", Master Thesis, University of Canterbury, Christchurch, New Zealand.
  76. Sugano, S. (1996), "Seismic behavior of reinforced concrete columns which used ultra-high-strength concrete", Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, June.
  77. Takemura, H.K.K. (1997), "Effect of loading hysteresis on ductility capacity of reinforced concrete bridge piers", J. Struct. Eng. ASCE, 43, 849-858.
  78. Tanaka, H. and Park, R. (1990), "Effect of lateral confining reinforcement on the ductile behavior of reinforced concrete columns", Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand.
  79. TBEC-2018 (2018), Turkish Building Earthquake Code, Specifications for Buildings to be Built in Seismic Areas, Ministry of Public Works and Settlement, Ankara, Turkiye.
  80. Thomson, J.H. and John, W.W. (1994), "Lateral load behavior of reinforced concrete columns constructed using high-strength materials", ACI Struct. J., 91(5), 605-615. https://doi.org/10.14359/4181.
  81. Umehara, H. and Jirsa, J.O. (1982), "Shear strength and deterioration of short reinforced concrete columns under cyclic deformations", PMFSEL Report No. 82-3; Department of Civil Engineering, The University of Texas at Austin, Austin, TX, USA.
  82. Wang, S., Xu, J., Wang, Y. and Pan, C. (2023), "Machine learning-based prediction of shear strength of steel reinforced concrete columns subjected to axial compressive load and seismic lateral load", Struct., 56, 104968. https://doi.org/10.1016/j.istruc.2023.104968.
  83. Watson, S. (1989), "Design of reinforced concrete frames of limited ductility", Doctor of Philosophy, University of Canterbury, Christchurch, New Zealand.
  84. Wehbe, N., Saiidi, M.S. and Sanders, D. (1998), "Confinement of rectangular bridge columns for moderate seismic areas", Nat. Center Earthq. Eng. Res. (NCEER), 12(1), 397-406.
  85. Wight, J.K. and Sozen M.A. (1973), "Shear strength decay in reinforced concrete columns subjected to large deflection reversals", Report No. UILU - ENG - 73-2017. 85-3, Civil Engineering Department, University of Illinois at Urbana, Champaign, IL.
  86. Xu, W. (2011), "Towards optimal one pass large scale learning with averaged stochastic gradient descent", arXiv preprint, arXiv:1107.2490. https://doi.org/10.48550/arxiv.1107.2490.
  87. Yalcin, C. (1997), "Seismic evaluation and retrofit of existing reinforced concrete bridge columns", Doctor of Philosophy, University of Ottawa, Ottawa, Ontario, Canada.
  88. Yarandi, M.S. (2007), "Seismic retrofit and repair of existing reinforced concrete bridge columns by transverse prestressing", Ph.D. Thesis, University of Ottawa, Ottawa, Ontario, Canada.
  89. Yoshimura, K., Kikuchi, K. and Kuroki, M. (1991), "Seismic shear strengthening method for existing reinforced concrete short columns", ACI Struct. J., 128(66), 1065-1080. https://doi.org/10.14359/2922.
  90. Yoshimura, M.T. and Nakamura, T. (2003), "Collapse drift of reinforced concrete columns", The Fifth U.S. - Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Structures, Hakone, Japan, September.
  91. Yoshimura, M. and Yamanaka, N. (2000), "Ultimate limit state of RC columns", The Second U.S.- Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Structures, Sapporo, Hokkaido, Japan, September.
  92. Zahn, F.A., Park, R. and Priestley, M.J.N. (1986), "Design of reinforced concrete bridge columns for strength and ductility", Report 86-7; Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.
  93. Zhang, C., Gholipour, G. and Mousavi, A.A. (2021), "State-of-the-art review on responses of RC structures subjected to lateral impact loads", Arch. Comput. Method. Eng., 28(4), 2477-2507. https://doi.org/10.1007/s11831-020-09467-5.
  94. Zhang, S., Xu, J., Lai, T., Yu, Y. and Xiong, W. (2023), "Bond stress estimation of profiled steel-concrete in steel reinforced concrete composite structures using ensemble machine learning approaches", Eng. Struct., 294, 116725. https://doi.org/10.1016/j.engstruct.2023.116725.
  95. Zhou, X., Higashi, Y., Jiang, W. and Shimizu, Y. (1985), "Behavior of reinforced concrete column under high axial load", Trans. Japan Concrete Inst., 7, 385-392.
  96. Zhou, X., Huang, B., Wang, X. and Xia, Y. (2022), "Deep learning-based rapid damage assessment of RC columns under blast loading", Eng. Struct., 271, 114949. https://doi.org/https://doi.org/10.1016/j.engstruct.2022.114949.
  97. Zhou, X., Satoh, T., Jiang, W., Ono, A. and Shimizu, Y. (1987), "Behavior of reinforced concrete short column under high axial load", Trans. Japan Concrete Inst., 9, 541-548.
  98. Zhou, Y., Zhao, X., Lin, K., Wang, C. and Li, L. (2019), "A Gaussian process mixture model-based hard-cut iterative learning algorithm for air quality prediction", Appl. Soft Comput., 85, 105789. https://doi.org/https://doi.org/10.1016/j.asoc.2019.105789.