DOI QR코드

DOI QR Code

Numerical simulation of wedge splitting test method for evaluating fracture behaviour of self compacting concrete

  • Raja Rajeshwari B. (Department of Civil Engineering, Vardhaman College of Engineering) ;
  • Sivakumar, M.V.N. (Department of Civil Engineering, National Institute of Technology (NIT) Warangal) ;
  • Sai Asrith P. (Department of Civil Engineering, National Institute of Technology (NIT) Warangal)
  • Received : 2022.06.29
  • Accepted : 2023.09.18
  • Published : 2024.03.25

Abstract

Predicting fracture properties requires an understanding of structural failure behaviour in relation to specimen type, dimension, and notch length. Facture properties are evaluated using various testing methods, wedge splitting test being one of them. The wedge splitting test was numerically modelled three dimensionally using the finite element method on self compacting concrete specimens with varied specimen and notch depths in the current work. The load - Crack mouth opening displacement curves and the angle of rotation with respect to notch opening till failure are used to assess the fracture properties. Furthermore, based on the simulation results, failure curve was built to forecast the fracture behaviour of self-compacting concrete. The fracture failure curve revealed that the failure was quasi-brittle in character, conforming to non-linear elastic properties for all specimen depth and notch depth combinations.

Keywords

Acknowledgement

The authors are glad to the Department of Civil Engineering, National Institute of Technology Warangal for providing research amenities to carry out this research work.

References

  1. Abdalla, H.M. and Karihaloo, B.L. (2003), "Determination of size-independent specific fracture energy of concrete from three-point bend and wedge splitting tests", Mag. Concrete Res., 55(2), 133-141. https://doi.org/10.1680/macr.2003.55.2.133.
  2. Banthia, N. (2015), "Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars", Comput. Concrete, 16(5), 759-774. https://doi.org/10.12989/cac.2015.16.5.759.
  3. BIS: 12269 (2013), Specifications for 53 Grade Ordinary Portland Cement, Bureau of Indian Standards, New Delhi, India.
  4. BIS: 383 (2016), Specification for Coarse and Fine Aggregates from Natural Sources for Concrete, Bureau of Indian Standards, New Delhi, India.
  5. Bretschneider, N., Slowik, V., Villmann, B. and Mechtcherine, V. (2011), "Boundary effect on the softening curve of concrete", Eng. Fract. Mech., 78(17), 2896-2906. https://doi.org/10.1016/j.engfracmech.2011.08.006.
  6. Bruhwiler, E. and Wittmann, F.H. (1990), "The wedge splitting test, a new method of performing stable fracture mechanics tests", Eng. Fract. Mech., 35(1-3), 117-125. https://doi.org/10.1016/0013-7944(90)90189-N.
  7. Build, N. (2005), "511: wedge splitting test method (WST)-fracture testing of fibre-reinforced concrete (Mode I)", Research Report No. NT BUILD 511; Nordic Innovation Centre, Oslo, Norway.
  8. Cao, X., Wu, L. and Li, Z. (2020), "Behaviour of steel-reinforced concrete columns under combined torsion based on ABAQUS FEA", Eng. Struct., 209, 109980. https://doi.org/10.1016/j.engstruct.2019.109980.
  9. EFNARC (2005), The European Guidelines for Self-Compacting Concrete: Specification, Production and Use, EFNARC, Flums Hochwiese, Switzerland.
  10. Guan, J.F., Hu, X.Z., Xie, C.P., Li, Q.B. and Wu, Z.M. (2018), "Wedge-splitting tests for tensile strength and fracture toughness of concrete", Theoret. Appl. Fract. Mech., 93, 263-275. https://doi.org/10.1016/j.tafmec.2017.09.006.
  11. Guan, J., Li, C., Wang, J., Qing, L., Song, Z. and Liu, Z. (2019), "Determination of fracture parameter and prediction of structural fracture using various concrete specimen types", Theoret. Appl. Fract. Mech., 100, 114-127. https://doi.org/10.1016/j.tafmec.2019.01.008.
  12. Hoover, C.G. and Bazant, Z.P. (2014), "Comparison of the Hu-Duan boundary effect model with the size-shape effect law for quasi-brittle fracture based on new comprehensive fracture tests", J. Eng. Mech., 140(3), 480-486. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000632.
  13. Hu, X.Z. and Wittmann, F.H. (1992), "Fracture energy and fracture process zone", Mater. Struct., 25(6), 319-326. https://doi.org/10.1007/BF02472590.
  14. Hu, X., Guan, J., Wang, Y., Keating, A. and Yang, S. (2017), "Comparison of boundary and size effect models based on new developments", Eng. Fract. Mech., 175, 146-167. https://doi.org/10.1016/j.engfracmech.2017.02.005.
  15. Jiang, Q., Zhou, Y., Feng, Y., Chong, X., Wang, H., Wang, X. and Yang, Q. (2022), "Experimental study and numerical simulation of a reinforced concrete hinged wall with BRBs at the base", J. Build. Eng., 49, 104030. https://doi.org/10.1016/j.jobe.2022.104030.
  16. Jin, N., Tian, Y. and Jin, X. (2007), "Numerical simulation of fracture and damage behaviour of concrete at different ages", Comput. Concrete, 4(3), 221-241. https://doi.org/10.12989/cac.2007.4.3.221.
  17. Kataoka, M.N., El Debs, A.L.H., Araujo, D.D.L. and Martins, B.G. (2020), "Computer modeling and analytical prediction of shear transfer in reinforced concrete structures", Comput. Concrete, 26(2), 151-159. https://doi.org/10.12989/cac.2020.26.2.151.
  18. Labibzadeh, M. (2015), "The numerical simulations of the strengthened RC slabs with CFRPs using standard CDP material model of Abaqus code", Eur. J. Environ. Civil Eng., 19(10), 1268-1287. https://doi.org/10.1080/19648189.2015.1013637.
  19. Linsbaue, H.N. and Tschegg, E.K. (1986), "Fracture energy determination of concrete with cube-shaped specimens", Zement und Beton, 31(1), 38-40.
  20. Liu, W., Yu, Y., Hu, X., Han, X. and Xie, P. (2019), "Quasi-brittle fracture criterion of bamboo-based fiber composites in transverse direction based on boundary effect model", Compos. Struct., 220, 347-354. https://doi.org/10.1016/j.compstruct.2019.04.008.
  21. Marefat, M.S., Khanmohammadi, M. and Goli, A. (2005), "Cyclic load testing and numerical modeling of concrete columns with substandard seismic details", Comput. Concrete, 2(5), 367-380. https://doi.org/10.12989/cac.2005.2.5.367.
  22. Ostergaard, L., Lange, D. and Stang, H. (2004), "Early-age stress-crack opening relationships for high performance concrete", Cement Concrete Compos., 26(5), 563-572. https://doi.org/10.1016/S0958-9465(03)00074-X.
  23. Que, N.S. and Tin-Loi, F. (2002), "Numerical evaluation of cohesive fracture parameters from a wedge splitting test", Eng. Fract. Mech., 69(11), 1269-1286. https://doi.org/10.1016/S0013-7944(01)00131-X
  24. Raza, A. and Ahmad, A. (2019), "Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS", Adv. Civil Eng., 2019, 1. https://doi.org/10.1155/2019/1745341.
  25. Sitek, M., Adamczewski, G., Szyszko, M., Migacz, B., Tutka, P. and Natorff, M. (2014), "Numerical simulations of a wedge splitting test for high-strength concrete", Procedia Eng., 91, 99-104. https://doi.org/10.1016/j.proeng.2014.12.021.
  26. Sucharda, O., Pajak, M., Ponikiewski, T. and Konecny, P. (2017), "Identification of mechanical and fracture properties of self-compacting concrete beams with different types of steel fibres using inverse analysis", Constr. Build. Mater., 138,263-275. https://doi.org/10.1016/j.conbuildmat.2017.01.077.
  27. Szczecina, M. and Winnicki, A. (2015), "Numerical simulations of corners in RC frames using strut-and-tie method and CDP model", COMPLAS XIII: Proceedings of the XIII International Conference on Computational Plasticity: Fundamentals and Applications, Barcelona, Spain, September.
  28. Wang, Y. and Hu, X. (2017), "Determination of tensile strength and fracture toughness of granite using notched three-point-bend samples", Rock Mech. Rock Eng., 50(1), 17-28. https://doi.org/10.1007/s00603-016-1098-6.
  29. Wang, J., Chen, X., Bu, J. and Guo, S. (2019), "Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs", Comput. Concrete, 24(4), 283-293. https://doi.org/10.12989/cac.2019.24.4.283.
  30. Yeghnem, R., Guerroudj, H.Z., Amar, L.H.H., Meftah, S.A., Benyoucef, S. and Tounsi, A. (2017), "Numerical modeling of the aging effects of RC shear walls strengthened by CFRP plates: A comparison of results from different "code type" models", Comput. Concrete, 19(5), 579-588. https://doi.org/10.12989/cac.2017.19.5.579.
  31. Yu, Q., Le, J.L., Hoover, C.G. and Bazant, Z.P. (2010), "Problems with Hu-Duan boundary effect model and its comparison to size-shape effect law for quasi-brittle fracture", J. Eng. Mech, 136(1), 40-50. https://doi.org/10.1061/(ASCE)EM.1943-7889.89.
  32. Zhang, D., Wang, Q. and Dong, J. (2016), "Simulation study on CFRP strengthened reinforced concrete beam under four-point bending", Comput. Concrete, 17(3), 407-421. https://doi.org/10.12989/cac.2016.17.3.407.