Acknowledgement
The authors are glad to the Department of Civil Engineering, National Institute of Technology Warangal for providing research amenities to carry out this research work.
References
- Abdalla, H.M. and Karihaloo, B.L. (2003), "Determination of size-independent specific fracture energy of concrete from three-point bend and wedge splitting tests", Mag. Concrete Res., 55(2), 133-141. https://doi.org/10.1680/macr.2003.55.2.133.
- Banthia, N. (2015), "Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars", Comput. Concrete, 16(5), 759-774. https://doi.org/10.12989/cac.2015.16.5.759.
- BIS: 12269 (2013), Specifications for 53 Grade Ordinary Portland Cement, Bureau of Indian Standards, New Delhi, India.
- BIS: 383 (2016), Specification for Coarse and Fine Aggregates from Natural Sources for Concrete, Bureau of Indian Standards, New Delhi, India.
- Bretschneider, N., Slowik, V., Villmann, B. and Mechtcherine, V. (2011), "Boundary effect on the softening curve of concrete", Eng. Fract. Mech., 78(17), 2896-2906. https://doi.org/10.1016/j.engfracmech.2011.08.006.
- Bruhwiler, E. and Wittmann, F.H. (1990), "The wedge splitting test, a new method of performing stable fracture mechanics tests", Eng. Fract. Mech., 35(1-3), 117-125. https://doi.org/10.1016/0013-7944(90)90189-N.
- Build, N. (2005), "511: wedge splitting test method (WST)-fracture testing of fibre-reinforced concrete (Mode I)", Research Report No. NT BUILD 511; Nordic Innovation Centre, Oslo, Norway.
- Cao, X., Wu, L. and Li, Z. (2020), "Behaviour of steel-reinforced concrete columns under combined torsion based on ABAQUS FEA", Eng. Struct., 209, 109980. https://doi.org/10.1016/j.engstruct.2019.109980.
- EFNARC (2005), The European Guidelines for Self-Compacting Concrete: Specification, Production and Use, EFNARC, Flums Hochwiese, Switzerland.
- Guan, J.F., Hu, X.Z., Xie, C.P., Li, Q.B. and Wu, Z.M. (2018), "Wedge-splitting tests for tensile strength and fracture toughness of concrete", Theoret. Appl. Fract. Mech., 93, 263-275. https://doi.org/10.1016/j.tafmec.2017.09.006.
- Guan, J., Li, C., Wang, J., Qing, L., Song, Z. and Liu, Z. (2019), "Determination of fracture parameter and prediction of structural fracture using various concrete specimen types", Theoret. Appl. Fract. Mech., 100, 114-127. https://doi.org/10.1016/j.tafmec.2019.01.008.
- Hoover, C.G. and Bazant, Z.P. (2014), "Comparison of the Hu-Duan boundary effect model with the size-shape effect law for quasi-brittle fracture based on new comprehensive fracture tests", J. Eng. Mech., 140(3), 480-486. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000632.
- Hu, X.Z. and Wittmann, F.H. (1992), "Fracture energy and fracture process zone", Mater. Struct., 25(6), 319-326. https://doi.org/10.1007/BF02472590.
- Hu, X., Guan, J., Wang, Y., Keating, A. and Yang, S. (2017), "Comparison of boundary and size effect models based on new developments", Eng. Fract. Mech., 175, 146-167. https://doi.org/10.1016/j.engfracmech.2017.02.005.
- Jiang, Q., Zhou, Y., Feng, Y., Chong, X., Wang, H., Wang, X. and Yang, Q. (2022), "Experimental study and numerical simulation of a reinforced concrete hinged wall with BRBs at the base", J. Build. Eng., 49, 104030. https://doi.org/10.1016/j.jobe.2022.104030.
- Jin, N., Tian, Y. and Jin, X. (2007), "Numerical simulation of fracture and damage behaviour of concrete at different ages", Comput. Concrete, 4(3), 221-241. https://doi.org/10.12989/cac.2007.4.3.221.
- Kataoka, M.N., El Debs, A.L.H., Araujo, D.D.L. and Martins, B.G. (2020), "Computer modeling and analytical prediction of shear transfer in reinforced concrete structures", Comput. Concrete, 26(2), 151-159. https://doi.org/10.12989/cac.2020.26.2.151.
- Labibzadeh, M. (2015), "The numerical simulations of the strengthened RC slabs with CFRPs using standard CDP material model of Abaqus code", Eur. J. Environ. Civil Eng., 19(10), 1268-1287. https://doi.org/10.1080/19648189.2015.1013637.
- Linsbaue, H.N. and Tschegg, E.K. (1986), "Fracture energy determination of concrete with cube-shaped specimens", Zement und Beton, 31(1), 38-40.
- Liu, W., Yu, Y., Hu, X., Han, X. and Xie, P. (2019), "Quasi-brittle fracture criterion of bamboo-based fiber composites in transverse direction based on boundary effect model", Compos. Struct., 220, 347-354. https://doi.org/10.1016/j.compstruct.2019.04.008.
- Marefat, M.S., Khanmohammadi, M. and Goli, A. (2005), "Cyclic load testing and numerical modeling of concrete columns with substandard seismic details", Comput. Concrete, 2(5), 367-380. https://doi.org/10.12989/cac.2005.2.5.367.
- Ostergaard, L., Lange, D. and Stang, H. (2004), "Early-age stress-crack opening relationships for high performance concrete", Cement Concrete Compos., 26(5), 563-572. https://doi.org/10.1016/S0958-9465(03)00074-X.
- Que, N.S. and Tin-Loi, F. (2002), "Numerical evaluation of cohesive fracture parameters from a wedge splitting test", Eng. Fract. Mech., 69(11), 1269-1286. https://doi.org/10.1016/S0013-7944(01)00131-X
- Raza, A. and Ahmad, A. (2019), "Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS", Adv. Civil Eng., 2019, 1. https://doi.org/10.1155/2019/1745341.
- Sitek, M., Adamczewski, G., Szyszko, M., Migacz, B., Tutka, P. and Natorff, M. (2014), "Numerical simulations of a wedge splitting test for high-strength concrete", Procedia Eng., 91, 99-104. https://doi.org/10.1016/j.proeng.2014.12.021.
- Sucharda, O., Pajak, M., Ponikiewski, T. and Konecny, P. (2017), "Identification of mechanical and fracture properties of self-compacting concrete beams with different types of steel fibres using inverse analysis", Constr. Build. Mater., 138,263-275. https://doi.org/10.1016/j.conbuildmat.2017.01.077.
- Szczecina, M. and Winnicki, A. (2015), "Numerical simulations of corners in RC frames using strut-and-tie method and CDP model", COMPLAS XIII: Proceedings of the XIII International Conference on Computational Plasticity: Fundamentals and Applications, Barcelona, Spain, September.
- Wang, Y. and Hu, X. (2017), "Determination of tensile strength and fracture toughness of granite using notched three-point-bend samples", Rock Mech. Rock Eng., 50(1), 17-28. https://doi.org/10.1007/s00603-016-1098-6.
- Wang, J., Chen, X., Bu, J. and Guo, S. (2019), "Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs", Comput. Concrete, 24(4), 283-293. https://doi.org/10.12989/cac.2019.24.4.283.
- Yeghnem, R., Guerroudj, H.Z., Amar, L.H.H., Meftah, S.A., Benyoucef, S. and Tounsi, A. (2017), "Numerical modeling of the aging effects of RC shear walls strengthened by CFRP plates: A comparison of results from different "code type" models", Comput. Concrete, 19(5), 579-588. https://doi.org/10.12989/cac.2017.19.5.579.
- Yu, Q., Le, J.L., Hoover, C.G. and Bazant, Z.P. (2010), "Problems with Hu-Duan boundary effect model and its comparison to size-shape effect law for quasi-brittle fracture", J. Eng. Mech, 136(1), 40-50. https://doi.org/10.1061/(ASCE)EM.1943-7889.89.
- Zhang, D., Wang, Q. and Dong, J. (2016), "Simulation study on CFRP strengthened reinforced concrete beam under four-point bending", Comput. Concrete, 17(3), 407-421. https://doi.org/10.12989/cac.2016.17.3.407.