References
- Akbas, S.D. (2018), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337.
- Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stress., 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397.
- Babaei, H., Kiani, Y. and Eslami, M.R. (2021), "Perturbation method for thermal post-buckling analysis of shear deformable FG-CNTRC beams with different boundary conditions", Int. J. Struct. Stab. Dyn., 21(13), 2150175. https://doi.org/10.1142/S0219455421501753.
- Baghbadorani, A.A. and Kiani, Y. (2021), "Free vibration analysis of functionally graded cylindrical shells reinforced with graphene platelets", Compos. Struct., 276, 114546. https://doi.org/10.1016/j.compstruct.2021.114546.
- Barati, M.R. and Zenkour, A.M. (2019), "Thermal post-buckling analysis of closed circuit flexoelectric nanobeams with surface effects and geometrical imperfection", Mech. Adv. Mater. Struct., 26(17), 1482-1490. https://doi.org/10.1080/15376494.2018.1432821.
- Bayat, Y. and Toussi, H.E. (2020), "Analytical layerwise solution of nonlinear thermal instability of SMA hybrid composite beam under nonuniform temperature condition", Mech. Adv. Mater. Struct., 27(19), 1673-1686. https://doi.org/10.1080/15376494.2018.1524950.
- Chai, Q.D. and Wang, Y.Q. (2022), "Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion", Eng. Struct., 252, 113718. https://doi.org/10.1016/j.engstruct.2021.113718.
- Chang, X.P., Zhou, J. and Li, Y.H. (2022), "Post-buckling characteristics of functionally graded fluid-conveying pipe with geometric ddefects on Pasternak foundation", Ocean Eng., 266(4), 113056. https://doi.org/10.1016/j.oceaneng.2022.113056.
- Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022a), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus, 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
- Chen, X., Zhao, J.L., She, G.L., Jing, Y., Pu, H.Y. and Luo, J. (2022b), "Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment", Steel. Compos. Struct., 45(5), 641-652. https://doi.org/10.12989/scs.2022.45.5.641.
- Dehghani, M. (2021), "Analyzing the thermal post-buckling of composite plate containing an elliptical cut-out using a particle semi-energy method", Int. J. Struct. Stab. Dyn., 21(7), 2150088. https://doi.org/10.1142/S0219455421500887.
- Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/sem.2021.80.1.063.
- Ding, H.X. and She, G.L. (2023a), "Nonlinear resonance of axially moving graphene platelet-reinforced metal foam cylindrical shells with geometric imperfection", Arch. Civil Mech. Eng., 23, 97. https://doi.org/10.1007/s43452-023-00634-6.
- Ding, H.X. and She, G.L. (2023b), "Nonlinear primary resonance behavior of graphene platelets reinforced metal foams conical shells under axial motion", Nonlinear Dyn., 111, 13723-13752. https://doi.org/10.1007/s11071-023-08564-x.
- Ding, H.X., Eltaher, M.A. and She, G.L. (2023a), "Nonlinear low-velocity impact of graphene platelets reinforced metal foams cylindrical shell: Effect of spinning motion and initial geometric imperfections", Aerosp. Sci. Technol., 140, 108435. https://doi.org/10.1016/j.ast.2023.108435.
- Ding, H.X., Liu, H.B., She, G.L. and Wu, F. (2023c), "Wave propagation of FG-CNTRC plates in thermal environment using the high-order shear deformation plate theory", Comput. Concrete, 32(2), 207-215. https://doi.org/10.12989/cac.2023.32.2.207.
- Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137, 1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2023b), "Propagation characteristics of guided waves in CNTRCs plates resting on elastic foundations in a thermal environment", Wave. Random Complex Media, 2023, 1-18. https://doi.org/10.1080/17455030.2023.2235611.
- Esfahani, S.E., Kiani, Y. and Eslami, M.R. (2013), "Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations", Int. J. Mech. Sci., 69, 10-20. https://doi.org/10.1016/j.ijmecsci.2013.01.007.
- Gan, L.L. and She, G.L. (2023), "Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions", Geomech. Eng., 32(5), 541-551. https://doi.org/10.12989/gae.2023.32.5.541.
- Gan, L.L., Xu, J.Q. and She, G.L. (2023), "Wave propagation of graphene platelets reinforced metal foams circular plates", Struct. Eng. Mech., 85(5), 645-654. https://doi.org/10.12989/sem.2023.85.5.645.
- Ghayesh, M.H. (2019), "Resonant dynamics of axially functionally graded imperfect tapered Timoshenko beams", J. Vib. Control, 25(2), 336-350. https://doi.org/10.1177/1077546318777591.
- Gholami, R. and Ansari, R. (2018), "The effect of initial geometric imperfection on the nonlinear resonance of functionally graded carbon nanotube-reinforced composite rectangular plates", Appl. Math. Mech., 39(9), 1219-1238. https://doi.org/10.1007/s10483-018-2367-9.
- Gu, X.J., Hao, Y.X., Zhang, W. and Chen, J. (2019), "Dynamic stability of rotating cantilever composite thin walled twisted plate with initial geometric imperfection under in-plane load", Thin Wall. Struct., 144, 106267. https://doi.org/10.1016/j.tws.2019.106267.
- Gupta, A. and Talha, M. (2018), "Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates", Mech. Based Des. Struct., 46(6), 693-711. https://doi.org/10.1080/15397734.2018.1449656.
- Hajlaoui, A. and Dammak, F. (2022), "A modified first shear deformation theory for three-dimensional thermal post-buckling analysis of FGM plates", Meccanica, 57(2), 337-353. https://doi.org/10.1007/s11012-021-01427-y.
- Hosseini, S.M.H. and Arvin, H. (2020), "Thermo-rotational buckling and post-buckling analyses of rotating functionally graded microbeams", Int. J. Mech. Mater. Des., 17(1), 55-72. https://doi.org/10.1007/s10999-020-09509-7.
- Jafari, P. and Kiani, Y. (2021), "Free vibration of functionally graded graphene platelet reinforced plates: A quasi 3D shear and normal deformable plate model", Compos. Struct., 275, 114409. https://doi.org/10.1016/j.compstruct.2021.114409.
- Jafari, P. and Kiani, Y. (2022), "A four-variable shear and normal deformable quasi-3D beam model to analyze the free and forced vibrations of FG-GPLRC beams under moving load", Acta Mech., 233(7), 2797-2814. https://doi.org/10.1007/s00707-022-03256-w.
- Jafarpour, S. and Khedmati, M.R. (2021), "Vibration analysis of stiffened plates with initial geometric imperfections", Proc. Inst. Mech. Eng. M: J. Eng. Marit. Environ., 235(2), 521-531. https://doi.org/10.1177/1475090220967520.
- Kalkan, I., Bocek, M. and Aykac, S. (2016), "Lateral stability of reinforced-concrete beams with initial imperfections", Proc. Inst. Civil Eng, Struct, Build., 169(10), 727-740. https://doi.org/10.1680/jstbu.15.00023.
- Li, X.Y., Yu, K.P. and Zhao, R. (2018), "Thermal post-buckling and vibration analysis of a symmetric sandwich beam with clamped and simply supported boundary", Arch. Appl. Mech., 88(4), 543-561. https://doi.org/10.1007/s00419-017-1326-x.
- Li, Y.P., She, G.L., Gan, L.L. and Liu, H.B. (2023), "Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection", Steel Compos. Struct., 46(5), 649-658. https://doi.org/10.12989/scs.2023.46.5.649.
- Liu, H., Lv, Z. and Tang, H.J. (2019), "Nonlinear vibration and instability of functionally graded nanopipes with initial imperfection conveying fluid", Appl. Math. Model., 76, 133-150. https://doi.org/10.1016/j.apm.2019.06.011.
- Liu, Q.Y. and Ma, J.P. (2021), "Finite element simulation for investigation on thermal post-buckling of geometrically imperfect GOP-reinforced beam", Adv. Concrete Constr., 12(2), 135-143. https://doi.org/10.12989/acc.2021.12.2.135.
- Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
- Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020), "Porosity effects on postbuckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
- Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Adv. Concrete Constr., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.
- Mirzavand, B. and Pourmohammad, H. (2019), "Post-buckling analysis of non-uniformly heated functionally graded cylindrical shells enhanced by shape memory alloys using classical lamination theory", J. Intel. Mat. Syst. Struct., 30(16), 2421-2435. https://doi.org/10.1177/1045389X19861794.
- Moghaddasi, M. and Kiani Y. (2022), "Free and forced vibrations of graphene platelets reinforced composite laminated arches subjected to moving load", Meccanica, 57(5), 1105-1124. https://doi.org/10.1007/s11012-022-01476-x.
- Rossi, A., de Souza, A.S.C., Nicoletti, R.S. and Martins, C.H. (2021), "The influence of structural and geometric imperfections on the LDB strength of steel-concrete composite beams", Thin Wall. Struct., 162, 107542. https://doi.org/10.1016/j.tws.2021.107542.
- She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model., 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014.
- She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sin., 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
- She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
- She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- Shen, H.S. and Wang, Z.X. (2014), "Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments", Int. J. Mech. Sci., 81, 195-206. https://doi.org/10.1016/j.ijmecsci.2014.02.020.
- Shenas, A.G., Malekzadeh, P. and Ziaee, S. (2021), "Analysis of vibration in rotating pretwisted functionally graded graphene platelets reinforced nanocomposite laminated blades with an attached point mass", Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 235(23), 6690-6710. https://doi.org/10.1177/09544062211008471.
- Song, J.P. and She, G.L. (2023), "Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions", Struct. Eng. Sci., 86(3), 361-371. https://doi.org/10.12989/sem.2023.86.3.361.
- Taati, E. (2018), "On buckling and post-buckling behavior of functionally graded micro-beams in thermal environment", Int. J. Eng. Sci., 128, 63-78. https://doi.org/10.1016/j.ijengsci.2018.03.010.
- Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
- Wang, Y.W. and Zhang, W. (2022), "On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams", Compos. Struct., 296, 115880. https://doi.org/10.1016/j.compstruct.2022.115880.
- Wang, Y.X. and Kiani, Y. (2022), "Effects of initial compression/tension, foundation damping and pasternak medium on the dynamics of shear and normal deformable GPLRC beams under moving load", Mater. Today Commun., 33, 104938. https://doi.org/10.1016/j.mtcomm.2022.104938.
- Wen, C.Q., Tang, L. and Yang, G.T. (2020), "Buckling and post-buckling of pinned Euler beams on weakened Winkler foundation under thermal loading", J. Therm. Stress., 43(5), 529-542. https://doi.org/10.1080/01495739.2020.1734128.
- Wu, F. and She, G.L. (2023), "Wave propagation in double nanobeams in thermal environments using the Reddy's high-order shear deformation theory", Adv. Nano Res., 14(6), 495-506. https://doi.org/10.12989/anr.2023.14.6.495.
- Wu, H.L., Kitipornchai, S. and Yang, J. (2017), "Imperfection sensitivity of thermal post-buckling behaviour of functionally graded carbon nanotube-reinforced composite beams", Appl. Math. Model., 42, 735-752. https://doi.org/10.1016/j.apm.2016.10.045.
- Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
- Xu, J.Q. and She, G.L. (2023), "Thermal post-buckling of graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Struct. Eng. Mech., 87(1), 85-94. https://doi.org/10.12989/sem.2023.87.1.085.
- Xu, J.Q., She, G.L., Li. Y.P. and Gan, L.L. (2023), "Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection", Steel Compos. Struct., 47(6), 795-811. https://doi.org/10.12989/scs.2023.47.6.795.
- Yang, Z.C., Wu, H.L., Yang, J., Liu, A.R., Safaei, B., Lv, J.E. and Fu, J.Y. (2022), "Nonlinear forced vibration and dynamic buckling of FG graphene-reinforced porous arches under impulsive loading", Thin Wall. Struct., 181, 110059. https://doi.org/10.1016/j.tws.2022.110059.
- Yas, M.H. and Rahimi, S. (2020), "Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using Generalized differential quadrature method", Aerosp. Sci. Technol., 107, 106261. https://doi.org/10.1016/j.ast.2020.106261.
- Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances", Nonlinear Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.
- Zhang, H.Y., Bai, H.F. and Zuo, Z.Y. (2022), "Post-buckling of magneto-electro-elastic porous functionally graded cylindrical shells with geometric imperfection", Int. J. Struct. Stab. Dyn., 22(13), 2250138. https://doi.org/10.1142/S0219455422501383.
- Zhang, Y.C., Jin, L., Shao, Y.S. and Zhao, J.Y. (2011), "Practical advanced design considering random distribution of initial geometric imperfections", Adv. Struct. Eng., 14(3), 379-389. https://doi.org/10.1260/1369-4332.14.3.379.
- Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel. Compos, Struct., 42(3) 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
- Zhang, Y.W. and She, G.L. (2023a), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlinear Dyn., 111(7), 6317-6334. https://doi.org/10.1007/s11071-022-08186-9.
- Zhang, Y.W. and She, G.L. (2023b), "Nonlinear primary resonance of axially moving functionally graded cylindrical shells in thermal environment", Mech. Adv. Mater. Struct., 2023, 1-12. https://doi.org/10.1080/15376494.2023.2180556
- Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stress., 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2023a), "Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes", Steel Compos. Struct., 46(1), 133-141. https://doi.org/10.12989/scs.2023.46.1.133.
- Zhang, Y.W., Ding, H.X., She, G.L. and Tounsi, A. (2023d), "Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories", Geomech. Eng., 33(4), 381-391. https://doi.org/10.12989/gae.2023.33.4.381.
- Zhang, Y.W., She, G.L. and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
- Zhang, Y.W., She, G.L., Gan, L.L. and Li, Y.P. (2023c), "Thermal post-buckling behavior of GPLRMF cylindrical shells with initial geometrical imperfection", Geomech. Eng., 32(6), 615-625. https://doi.org/10.12989/gae.2023.32.6.615.
- Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M., and She, G.L. (2021), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
- Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel. Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
- Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://doi.org/10.12989/anr.2022.13.5.465.
- Zhu, S.B., Tong, Z.Z., Sun, J.B., Li, Q.D., Zhou, Z.H. and Xu, X.S. (2021), "Electro-thermo-mechanical post-buckling of piezoelectric functionally graded cylindrical shells", Appl. Math. Model., 98, 309-322. https://doi.org/10.1016/j.apm.2021.05.011.