Acknowledgement
This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant No. NRF-2022R1F1A1061622).
References
- Bai ZD, Chen XR, Miao BQ, and Rao CR (1990). Asymptotic theory of least distance estimate in multivariate linear model, Statistics, 21, 503-519. https://doi.org/10.1080/02331889008802260
- Bang S and Jhun M (2013). Two-stage penalized composite quantile regression with grouped variables, Communications for Statistical Applications and Methods, 20, 259-270. https://doi.org/10.5351/CSAM.2013.20.4.259
- Bang S and Jhun M (2014). Adaptive sup-norm regularized simultaneous multiple quantiles regression, Statistics, 48, 17-33. https://doi.org/10.1080/02331888.2012.719512
- Breiman L and Friedman JH (1997). Predicting multivariate responses in multiple linear regression, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59, 3-54. https://doi.org/10.1111/1467-9868.00054
- Brown PJ and Zidek JV (1980). Adaptive multivariate ridge regression, The Annals of Statistics, 8, 64-74. https://doi.org/10.1214/aos/1176344891
- Fan J and Li R (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Haitovsky Y (1987). On multivariate ridge regression, Biometrika, 74, 563-570. https://doi.org/10.1093/biomet/74.3.563
- Hoerl A and Kennard R (1970). Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12, 55-67. https://doi.org/10.1080/00401706.1970.10488634
- Jhun M and Choi I (2009). Bootstrapping least distance estimator in the multivariate regression model, Computational Statistics and Data Analysis, 53, 4221-4227. https://doi.org/10.1016/j.csda.2009.05.012
- Simila T and Tikka J (2006). Common subset selection of inputs in multiresponse regression, In Proceedings of The 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, Canada, 1908-1915.
- Tibshirani R (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological), 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
- Turlach B, Venables WN, and Wright SJ (2005). Simultaneous variable selection, Technometrics, 27, 349-363. https://doi.org/10.1198/004017005000000139
- Wang H and Leng C (2008). A note on adaptive group lasso, Computational Statistics and Data Analysis, 52, 5277-5286. https://doi.org/10.1016/j.csda.2008.05.006
- Yeh IC (2009). Simulation of concrete slump using neural networks, Proceedings of the Institution of Civil Engineers-Construction Materials, 162, 11-18. https://doi.org/10.1680/coma.2009.162.1.11
- Yuan M and Lin Y (2006). Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68, 49-67. https://doi.org/10.1111/j.1467-9868.2005.00532.x
- Zhang H, Wang J, Sun Z, Zurada JM, and Pal NR (2019). Feature selection for neural networks using group lasso regularization, IEEE Transactions on Knowledge and Data Engineering, 32, 659-673. https://doi.org/10.1109/TKDE.2019.2893266
- Zou H (2006). The adaptive lasso and its oracle properties, Journal of the American Statistical Association, 101, 1418-1429. https://doi.org/10.1198/016214506000000735