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GENERALIZED PROXIMAL ITERATIVELY

REWEIGHTED ℓ1 ALGORITHM WITH

CO-COERCIVENESS FOR NONSMOOTH AND

NONCONVEX MINIMIZATION PROBLEM.

Myeongmin Kang*

Abstract. The nonconvex and nonsmooth optimization problem
has been widely applicable in image processing and machine learn-
ing. In this paper, we propose an extension of the proximal it-
eratively reweighted ℓ1 algorithm for nonconvex and nonsmooth
minmization problem. We assume the co-coerciveness of a term of
objective function instead of Lipschitz gradient condition, which is
generalized property of Lipschitz continuity. We prove the global
convergence of the proposed algorithm. Numerical results show
that the proposed algorithm converges faster than original proxi-
mal iteratively reweighed algorithm and existing algorithms.

1. Introduction

We consider the following nonconvex and nonsmooth optimization
problem:

min
x

f1(x) + f2(x) + h(g(x)),(1.1)

where f1 : Rn → R is a proper, differentiable, convex function and
f2 : Rn → R ∪ {∞} is a proper, lower semicontinuous (l.s.c.) and
convex function, g : Rn → Rm is a proper and l.s.c. function, and
h : Image(g) → R is continuously differentiable function. Furthermore,
we assume the following conditions:

• ∇f1 is co-coercive.
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• g is coordinate-wise convex, i.e. coordinate functions gi of g are
convex.

• h has a strictly continuous gradient and is coordinate-wise nonde-
creasing, i.e. h(x) ≤ h(x+aei) for all i = 1, · · · ,m, where ei is i-th
standard basis vector, a > 0 is constant and x, x+aei ∈ Image(g).

• The objective function of the problem (1.1) is coercive, closed,
bounded below and definable in an o-minimal structure.

Since studies have shown the effectiveness of nonconvex regularization in
image processing problems, the problem of the form (1.1) is often used
as a variational model in image processing or signal processing.

Over the past few decades, many algorithms for convex minimization
problem have been developed, and the theory of convex optimization
has made many advances. On the other hand, algorithms for solving
nonconvex optimization have been proposed recently. The classical al-
gorithms for nonconvex optimization are extensions of methods for con-
vex optimization, such as gradient-based methods [9], proximal point
methods [6], iterative shrinkage thresholding algorithm [4], and alter-
nating direction method of multipliers [14, 5] . In recent, an iteratively
reweighted ℓ1 algorithm (IRL1) for nonconvex regularization model [3]
to solve a compressive sensing problem without convergence analysis.
Here, the nonconvex regularization based model has the form of the
problem (1.1). Ochs et al. [10] proposed generalized version of the
IRL1, which is an iterative convex majorization-minimization method
for solving nonsmooth and nonconvex optimization problem (1.1) and
proved the convergence analysis. By adopting linearization technique,
the proximal linearized iteratively reweighted algorithms were proposed
in [13].

A proximal linearlized iteratively reweighted ℓ1 algorithm (PL-IRL1)
is an example of proximal linearlized convex majorization-minimization
methods proposed in [13]. For the convergence of PL-IRL1, it was as-
sumed that f1 has Lipschitz gradient to deal with the linearization of
f1. In this paper, we propose a generalized version of PL-PIRL1 under
the assumption the co-coerciveness of ∇f1. This enables the proposed
method to be applied to many applications and it also leads that the
proposed method has faster convergence than PL-PIRL1.

The rest of this manuscript is organized as follows. Section 2 will
give the definitions of the mathematical concepts in assumptions. In
Section 3 we will define the proposed algorithm and prove the global
convergence. In Section 4, we will apply the proposed algorithm to image
processing and signal processing examples and compare the performance
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of the proposed algorithm to the existing algorithms. Finally, in Section
5, we will conclude our work.

2. Mathematical Preliminary

In this section, we introduce several mathematical concepts and prop-
erties for our method. First, we define Kurdyka- Lojasiewicz property
[7, 8] that is often used to prove the convergence of algorithms for solv-
ing nonconvex minimization problems.

Definition 2.1. A function f : Rn → R∪{∞} satisfies the Kurdyka-
 Lojasiewicz (KL) property at a point x∗ ∈ dom(∂f) if there exist ρ ∈
(0,∞], a neighborhood U of x∗ and a continuous and convex function
φ : [0, ρ) → [0,∞) such that

• φ(0) = 0
• φ is differentiable in (0, ρ)
• φ(t) > 0, ∀t ∈ (0, ρ)
• ∀x ∈ U ∩ {x ∈ R : f(x∗) < f(x) < f(x∗ + ρ)},

dist(0, ∂f(x))φ′(f(x) − f(x∗)) ≥ 1.

If f satisfies the KL property at every point in dom(∂f), f is called a
KL function.

Simple KL functions are semialgebraic functions. It was proved in
[2] that functions that are definable in some o-minimal structure satisfy
the KL property. Note that definable sets and functions in some o-
minimal structure share several properties of semialgebraic objects. The
log-exp structure [12, 11] is a well-known example, which is a large o-
minimal structure including all semialgebraic functions as well as log
and exponential functions.

In order to solve minimization problems, the linearlization technique
is frequently used to solve optimization problems and can make it eas-
ier to solve a subproblem of an iterative algorithm. For linearlization
technique, it is usually assumed that the objective function or its part
is a continuously differentiable and also has the Lipschitz continuity of
its gradient. In this work, we introduce a concept more general than
Lipschitz continuity, which is called co-coercive.

Definition 2.2. A operator B : Rn → Rn is called co-coercive with
a symmetric and positive definite map L if it satisfies the following
inequality:

⟨B(x) −B(y), x− y⟩ ≥ ∥B(x) −B(y)∥2L−1 , ∀x, y ∈ Rn,
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where ∥x∥2L−1 = ⟨L−1x, x⟩.

Note that if the operator B is 1
l I co-coercive, then it is Lipschitz

continuous with Lipschitz constant l.
Lastly, we introduce a general framework [1] for an iterative method

for solving an unconstrained minimization problem. We consider the
following general unconstrained minimization problem:

min
x∈Rn

F (x),(2.1)

where F : Rn → R ∪ {∞} is a l.s.c., proper and KL function. It was
proved in [1] that an iterative algorithm applied to solve the problem
(2.1) converges when it satisfies the following three conditions. Let {xk}
be a sequence generated by given algorithm.

C1 (Sufficient decrease condition) There exists a value α > 0 such
that

F (xk+1) + α∥xk+1 − xk∥22 ≤ F (xk), ∀k ∈ N.
C2 (Relative error condition) For each k ∈ N, there exist a sequence

{uk} ∈ ∂F (xk) and a constant β > 0 such that

∥uk+1∥2 ≤ β∥xk+1 − xk∥2.
C3 (Continuity condition) There exists a subsequence {xkj}j∈N of

{xk} and x̄ such that

xkj → x̄ and F (xkj ) → F (x̄), as j → ∞.

Under the above assumptions, the following convergence result is given
in [1].

Theorem 2.3. Let {xk} be a sequence generated by given algorithm
that satisfies the conditions C1-C3. If F has KL property at a cluster
point x̄ in C3, then the sequence {xk} converges to x̄ as k goes to ∞
and x̄ is a critical point of F . Furthermore, {xk} has a finite length, i.e.

∞∑
k=0

∥xk+1 − xk∥2 < ∞.

3. Proposed method

In this section, we propose an extension of the (proximal) iteratively
reweighted ℓ1 algorithm for solving the nonconvex and nonsmooth min-
imization problem (1.1). Let F (x) := f1(x) + f2(x) + h(g(x)) be the
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objective function of the problem (1.1). The iteratively reweighted ℓ1
algorithm is a well-known algorithm, which uses a weight function as a
convex realxation of the noncovex term in (1.1):

xk+1 = arg min
x

f1(x) + f2(x) + ⟨wk, g(x)⟩,

where the weight wk := ∇h(g(xk)). This subproblem is convex, but it
is not solved exactly in general. By adopting the linearization technique
of f1, the proximal linearized iteratively reweighted ℓ1 algorithm (PL-
IRL1) was proposed in [13]:

xk+1 = arg min
x

⟨∇f1(x), x− xk⟩ + f2(x) + ⟨wk, g(x)⟩ +
α

2
∥x− xk∥22.

The proximal iteratively reweighted ℓ1 algorithm converges globally un-
der the assumptions that ∇f1 is Lipschitz continuous with Lipschitz
constant l and α > l

2 holds. When l is large, it converges too slowly.
Moreover, the assumption of Lipschitz continuity of ∇f1 is too strong.
To overcome this drawback, we assume more generalized concept which
is co-coerciveness of ∇f1. Under this assumption, the proposed method
to solve the problem (1.1) is given in Algorithm 1.

Algorithm 1 Generalized proximal iteratively rewieghted ℓ1 al-
gorithm (GPL-IRL1)

1: Input : x0 with F (x0) < ∞, L̄ is a symmetric positive definite
matrix.

2: repeat
3: wk = ∇h(g(xk))

4: xk+1 = arg min
x

⟨∇f1(x), x−xk⟩+f2(x)+⟨wk, g(x)⟩+
1

2
∥x−xk∥2L̄,

5: until a stopping criterion is satisfied.

Let pk(x) := ⟨∇h(g(xk)), x⟩. Note that the function pk(x) is convex,
proper, nondecreasing on Im(g). Moreover, pk(y) ≥ h(y) for any y ∈
Im(g) and p(g(xk)) = h(g(xk)). A function that satisfies these conditions
is called a convex majorizer of h ◦ g. It follows form [10] that pk(g(x))
is the optimal majorizer of h ◦ g at xk.

First, we need a further assumption for the convergence of the pro-
posed algorithm. It is assume that the functions pk for all k ∈ N have
strictly continuous gradients with common constant.

To prove the convergence of the proposed method, we need a property
of co-coercive function.



46 M Kang

Lemma 3.1. If ∇f(x) is co-coercive, then

f(y) ≤ f(x) + ∇f(x)T (y − x) +
1

2
∥x− y∥2L, x, y ∈ Rn.(3.1)

Proof. Since ∇f is co-coercive, we have the following inequalities:

∥∇f(x) −∇f(y)∥2L−1 ≤ ⟨∇f(x) −∇f(y), x− y⟩
= ⟨L−1/2(∇f(x) −∇f(y)), L1/2(x− y)⟩
≤ ∥L−1/2(∇f(x) −∇f(y))∥2∥L1/2(x− y)∥2
=

√
⟨L−1(∇f(x) −∇f(y)), (∇f(x) −∇f(y))⟩

·
√
⟨L(x− y), (x− y)⟩

= ∥∇f(x) −∇f(y)∥L−1∥x− y∥L,

where third inequality is obtained from the Cauchy-Schwarz inequality.
Hence, we can obtain

∥∇f(x) −∇f(y)∥L−1 ≤ ∥x− y∥L.(3.2)

Let g(x) = 1
2∥x∥

2
L − f(x). From previous inequalities, we have

⟨∇f(x) −∇f(y), x− y⟩ ≤ ∥∇f(x) −∇f(y)∥L−1∥x− y∥L
≤ ∥x− y∥2L(3.3)

From the gradient Lx−∇f(x) of g, substituting ∇f(x) = Lx−∇g(x)
to the equation (3.3),

∥x− y∥L ≥ ⟨Lx−∇g(x) − Ly + ∇g(y), x− y⟩
= ⟨Lx− Ly, x− y⟩ − ⟨∇g(x) −∇g(y), x− y⟩
= ∥x− y∥2L − ⟨∇g(x) −∇g(y), x− y⟩,

i.e.

⟨∇g(x) −∇g(y), x− y⟩ ≥ 0.

Thus, g is convex. It follows from gradient inequality of g that

1

2
∥y∥2L − f(y) ≥ 1

2
∥x∥2L − f(x) + (Lx−∇f(x))T (y − x), ∀x, y ∈ Rn.
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Rearranging the above equation, we can obtain the final inequality: for
any x, y ∈ Rn,

f(y) ≤ f(x) +
1

2
∥y∥2L − 1

2
∥x∥2L − (Lx−∇f(x))T (y − x)

= f(x) + (−1

2
∥x∥2L +

1

2
∥y∥2L − LxT (y − x)) + ∇f(x)T (y − x)

= f(x) + ∇f(x)T (y − x) + (
1

2
∥x∥2L +

1

2
∥y∥2L − LxT y)

= f(x) + ∇f(x)T (y − x) +
1

2
∥x− y∥2L.

By using Lemma 3.1, we can prove the sufficient decrease condition
C1 of the proposed algorithm.

Theorem 3.2. Let xk be generated by GPL-IRL1. If 2L̄ − L is
symmetric and positive definite, then

F (xk+1) +
λ

2
∥xk+1 − xk∥ ≤ F (xk), ∀k ∈ N,

where λ > 0 is the smallest eigenvalue of 2L̄− L.

Proof. For any subgradients qk+1
1 ∈ ∂f2(x

k+1), qk+1
2 ∈ ∂(pk◦g)(xk+1),

we can obtain

f2(x
k+1) − f2(x

k) ≤ (qk+1
1 )T (xk+1 − xk),

pk(g(xk+1)) − pk(g(xk)) ≤ (qk+1
2 )T (xk+1 − xk).

It follows from [10, Lemma 1] that

∂(f2 + pk ◦ g)(x) = ∂f2(x) + ∂(pk ◦ g)(x), ∀x ∈ Rn.

By optimality of the subproblem of the proposed method, there exist
subgradients qk+1

1 ∈ ∂f2(x
k+1), qk+1

2 ∈ ∂(pk ◦ g)(xk+1) s.t.

∇f1(x
k) + qk+1

1 + qk+1
2 + L̄(xk+1 − xk) = 0.(3.4)
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Then, we have

F (xk+1) − F (xk) = f1(x
k+1) + f2(x

k+1) + h(g(xk+1))

−(f1(x
k) + f2(x

k) + h(g(xk)))

≤ f1(x
k+1) + f2(x

k+1) + pk(g(xk+1))

−(f1(x
k) + f2(x

k) + pk(g(xk)))

≤ ∇f(xk)T (xk+1 − xk) +
1

2
∥xk+1 − xk∥2L

+(qk+1
1 )T (xk+1 − xk) + (qk+1

2 )T (xk+1 − xk)

= (∇f(xk) + qk+1
1 + qk+1

2 )T (xk+1 − xk)

+
1

2
∥xk+1 − xk∥2L

= −∥xk+1 − xk∥2L̄ +
1

2
∥xk+1 − xk∥2L

= −1

2
∥xk+1 − xk∥22L̄−L

≤ −λ

2
∥xk+1 − xk∥22,

where the second inequality is from the property of p that pk(g(xk+1)) ≥
h(g(xk+1)) and pk(g(xk)) = h(g(xk)), the third inequality is obtained
from the equation (3.1) and the fifth equality can be obtained from
(3.4).

Second, we prove the relative error condition(C2) of the proposed
algorithm.

Theorem 3.3. There exist a positive constant C > 0 and a subgra-
dient qk+1 ∈ ∂F (xk+1) for fixed k ∈ N such that

∥qk+1∥2 ≤ C∥xk+1 − xk∥2.

Proof. By previous theorem and coercivity of F , the sequence xk is
bounded. Thus, there exists a compact and convex set containing {xk}
in Rn. From the convexity of g and the strictly continuity of ∇h and
∇pk, the functions g, ∇h, ∇pk are Lipschitz continuous on this compact
and convex set containing xk. Let L1, L2, L3 be the (common) Lipschitz
constants of g, ∇h and ∇pk, respectively.

We consider the subgradients qk+1
1 ∈ ∂f2(x

k+1), qk+1
2 ∈ ∂(pk◦g)(xk+1)

satisfying (3.4). With setting yk+1 = ∇pk(g(xk+1)) and y := ∇h(g(xk+1)),

we can decompose qk+1
2 =

∑
i y

k+1
i ξi for some ξi ∈ ∂gi(x

k+1) and
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∂(h ◦ g)(xk+1) =
∑

i yi∂gi(x
k+1) by [10, Lemma 1]. We set q2 :=∑

i yiξi ∈ ∂(h ◦ g)(xk+1). By Lipschitz continuity of g, we have

∥q2 − qk+1
2 ∥2 ≤ ∥

∑
i

(yi − yk+1
i )ξi∥2 ≤ L1∥y − yk+1∥2.(3.5)

On the other hands, note that for any symmetric positive definite matrix
P , there exist an orthogonal matrix U and a diagonal positive definite
matrix D s.t. P = UDUT by Spectral theorem. Here, diagonal compo-
nents of D are eigenvalues of P . For any x ∈ Rn, we have

∥x∥2P = xTPx = xT (UDUT )x = (UTx)TD(UTx)

≥ λn(UTx)(UTx) = λn∥x∥22,
where λn is the smallest eigenvalue of P . That is,

(3.6) ∥x∥2 ≤
1√
λn

∥x∥P , ∀x ∈ Rn.

Similarly, we also obtain

∥x∥P ≤
√

λ1∥x∥2, ∀x ∈ Rn,(3.7)

where λ1 is the largest eigenvalue of P . Let qk+1 := ∇f(xk+1)+qk+1
1 +q2.

Then, qk+1 ∈ ∂F (xk+1) from [10, Lemma 1]. From (3.4),

∥qk+1∥2 = ∥∇f(xk+1) + qk+1
1 + q2

−(∇f(xk) + qk+1
1 + qk+1

2 + L̄(xk+1 − xk))∥2
≤ ∥∇f(xk+1) −∇f(xk)∥2 + ∥q2 − qk+1

2 ∥2 + ∥xk+1 − xk∥L̄2

≤
√
λ1∥∇f(xk+1) −∇f(xk)∥L−1 + L1∥y − yk+1∥2

+λ1∥xk+1 − xk∥2
≤

√
λ1∥xk+1 − xk∥L + λ1∥xk+1 − xk∥2

+L1∥y −∇h(g(xk)) + ∇pk(g(xk)) − yk+1∥2
≤ (2λ1 + L2

1(L2 + L3))∥xk+1 − xk∥2,
where the third inequality is obtained from (3.6), (3.5) and (3.7), the
fourth inequality is obtained from the fact ∇h(g(xk)) = ∇pk(g(xk))
and (3.2), and the last inequality is from the equation (3.7). Since
2λ1+L2

1(L2+L3) is positive constant, the desired results is obtained.

Theorem 3.4. There exist a convergent subsequence {xkj} of {xk}
and a limit x̄ such that

lim
j→∞

xkj = x̄, F (xkj ) → F (x̄) as j → ∞.
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Proof. Since 1
2∥x

k+1 − xk∥2
L̄

is convex, we can obtain the desired re-
sults by similar steps in [13, Proposition 6].

From Theorems 3.2-3.4, the three conditions C1-C3 are satisfied. Fi-
nally, we can obtain the following global convergence of our algorithm.

Theorem 3.5. Let F be a proper, l.s.c function. Let {xk}k∈Rn be
generated by GPL-IRL1. If F has the KL property at a cluster point
x̄ := limj→∞ xkj , then {xk} converges to x̄ as k → ∞ and x̄ is a critical
point of F . Moreover, it has finite length:

∞∑
k=1

∥xk+1 − xk∥2 < ∞.

4. Numerical Results

In this section, we present the numerical results comparing the pro-
posed algorithm with the PL-IRL1 [13]. We consider an image deblur-
ring problem as an application of the proposed method. The mathemat-
ical degraded model of image deblurring problem is given as follows,

f = Au + n,

where f ∈ Rm×n or Rmn is an observed blurred and noisy image, u ∈
Rm×n is an original clean image, A is a blurring linear operator and n
is additive Gaussian white noise with mean 0 and standard deviation σ.
A famous nonconvex total variation based model for image deblurring
is given as follows,

min
u

λ

2
∥Au− f∥22 +

1

ρ

∑
i

log(1 + ρ(∇u)2i ),

where λ is a regularization parameter and ρ is a positive constant that
controls nonconvexity of total variation regularization. Unfortunately,
the GPL-IRL1 cannot be directly applied to the above problem. Here,
we adopt the axillary variable d and penalty technique. We consider the
following nonconvex minimization problem:

(4.1) min
u,d

F (u, d) =
λ

2
∥Au− f∥22 +

µ

2
∥d−∇u∥22 +

1

ρ

∑
i

log(1 + ρ(d)2i ),
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where µ > 0 is a penalty parameter. We set

f1(u, d) =
µ

2
∥d−∇u∥22, f2(u, d) =

λ

2
∥Au− f∥22,

g(u, d) = d2, h(y) =
1

ρ

∑
i

log(1 + ρ(y)i).

Since the objective function of the problem (4.1) is definable in the log-
exp o-minimal structure, it is a KL function. Trivially, it is coercive and
closed. Moreover, f1 is convex, proper and continuously differentiable
function with co-coercive gradient. Specifically,

∇f1 =

[
µ∇T (∇u− d)
µ(d−∇u)

]
=

[
µ∇T∇ −µ∇T

−µ∇ µI

] [
u
d

]
.

Let B =

[
µ∇T∇ −µ∇T

−µ∇ µI

]
. Then, we have

⟨∇f1(u1, d1) −∇f1(u2, d2), (u1, d1)
T − (u2, d2)

T ⟩
= ⟨B(u1, d1)

T −B(u2, d2)
T , (u1, d1) − (u2, d1)⟩.

Since B is a symmetric and positive semidefinite matrix, there exist an
orthogonal matrix U and diagonal matrix D such that B = UTDU by
spectral theorem. Let D′ = max(D, t) for small positive value t > 0 and
L = UTD′U . Then,

B −BL−1B = UT (D −D2D′−1)U,

and all digaonal elements of D − D2D′−1 are nonnegative. So, B −
BL−1B is postivie semidefinite.[

(u1 − u2)
T (d1 − d2)

T
]

(B −BL−1B)

[
u1 − u2
d1 − d2

]
≥ 0

⇔
[

(u1 − u2)
T (d1 − d2)

T
]
B

[
u1 − u2
d1 − d2

]
≥

[
(u1 − u2)

T (d1 − d2)
T

]
BL−1B

[
u1 − u2
d1 − d2

]
⇔

[
(u1 − u2)

T (d1 − d2)
T

]
B

[
u1 − u2
d1 − d2

]
≥ ∥B(u1, d1)

T −B(u2, d2)
T ∥2L−1 .

Hence, ∇f1 is co-coercive with L. Here we set t = eps.
Clearly, f2 is a proper and convex, l.s.c. function. h : R2mn

+ → R is
coordinatewise nondecreasing, continuously differentiable and concave.
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(a) (b) (c)

Figure 1. Test images

(a) (b) (c)

Figure 2. Deblurring results. Top : uniform blur, Bot-
tom : motion blur, (a) Blurry and Noisy images, (b)
PL-IRL1, (c) GPL-IRL1.

g is coordinatewise convex, proper, l.s.c. Thus, we can apply GPL-IRL1
to the problem (4.1), which is given as follows:

wk =
1

1 + ρ(dk)2

(uk+1, dk+1) = arg min
u,d

⟨wk, d2⟩ +
λ

2
∥Au− f∥22 + ⟨µ(dk −∇uk), d⟩

+⟨µ∇T (∇uk − dk), u⟩ + ∥(u, d)T − (uk, dk)T ∥2L̄.
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Table 1. Comparison results with noise level σ = 0.01.

Model PL-IRL1 GPL-IRL1

Blur Type Uniform Blur

Image time / Iterations / Energy / PSNR time / Iterations / Energy / PSNR

Butterfly 3.52 / 381 / 182 / 29.03 2.07 / 223 / 164 / 30.14
Cameraman 2.96 / 408 / 105 / 25.22 1.51 / 218 / 96 / 26.08

Fields 2.01 / 212 / 77 / 30.60 1.10 / 119 / 74 / 31.26
House 2.51 / 351 / 83 / 31.21 1.22 / 174 / 78 / 32.22

Parrot 2.47 / 355 / 123 / 25.44 1.53 / 221 / 111 / 26.34

Blur Type Motion Blur

Image time / Iterations / Energy / PSNR time / Iterations / Energy / PSNR

Butterfly 3.70 / 393 / 182 / 31.27 1.89 / 202 / 168 / 31.88
Cameraman 2.89 / 409 / 114 / 27.97 1.37 / 201 / 107 / 28.73

Fields 1.99 / 210 / 80 / 31.75 1.00 / 107 / 78 / 32.21

House 2.35 / 325 / 83 / 32.34 1.19 / 169 / 78 / 33.19
Parrot 2.53 / 346 / 133 / 27.95 1.52 / 217 / 123 / 28.87

To solve the subproblem exactly, L̄ is set to be

L̄ =

[
µ∇T∇ + δI 0

0 µI

]
,

with small positive value of δ > t. Then, L̄ is symmetric and positive
definite under periodic boundary condition and L̄ − L

2 is also positive
definite. The optimality conditions of the convex subproblem in GPL-
IRL1 are given as follows:

2wkd + µ(dk −∇uk) + µ(d− dk) = 0(4.2)

µ∇T (∇uk − dk) + λAT (Au− f) + (µ∇T∇ + δI)(u− uk) = 0.(4.3)

The problem (4.3) is a linear equation. Note that µ∇T∇ + δI + λATA
is diagonalizable by 2D-fast Fourier transform (FFT) under periodic
boundary condition. Hence, each problem has a closed form solution:

dk+1 =
µ∇uk

(2wk + µ)
,

uk+1 = F−1

(
F(µ∇Tdk + λAT f + δuk)

F(µ∇T∇ + δI + λATA)
,

)
where F is 2D FFT.

In this experiment, we test on 5 images in Figure 1. We use two types
of blur kernels: a uniform blur kernel of size 5×5 and a motion blur with
size 5 × 5 and a 60◦ degree angle. The standard deviation of additive
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Gaussian noise is set to 0.01. The regularization parameter λ is fixed as
λ = 10 and penalty parameter µ is set to be 20 for all cases. We also
set δ = 10−5. In Tables 1, we present the computing time, number of
iterations, final energy and PSNR values. In this experiment, we assume
that the image intensity range is [0,1]. Figure 2 illustrates the degraded
images corrupted by blurring and Gaussian noise and resulting images
of the proposed method and PL-IRL1.

First, it can be observed that the GPL-IRL1 is faster and uses a
smaller number of iterations than the PL-IRL1 for all tests. Further-
more, the final energy value of the proposed algorithm is smaller than
that of PL-IRL1 in all cases This shows that the proposed method mini-
mizes the energy function more effectively. Furthermore, the GPL-IRL1
provides slightly higher PSNR values than PL-IRL1. Thus, the pro-
posed algorithm finds better solutions than PL-IRL1. In Figure 2, we
can also observe that the GPL-IRL1 produces slightly better restored
images visually than the PL-IRL1. In conclusion, our algorithm gives
better performance than PL-IRL1 in terms of accuracy, speed, and op-
timization of the energy function.

5. Conclusion

In this article, we proposed generalized proximal linearized iteratively
reweighted ℓ1 algorithm for solving the nonconvex and nonsmooth min-
imization problem (1.1). We extended the existing proximal linearized
iteratively reweighted ℓ1 algorithm by assuming that the co-coerciveness
of the gradient of the continuously differentiable term of the objective
function in (1.1). Based on unified framework, we proved the global
convergence of the proposed method. The numerical results related to
image deblurring problem showed that the proposed method has out-
standing performance of restoration compared with proximal linearized
iteratively reweighted ℓ1 algorithm.
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