JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **37**, No. 1, February 2024 http://dx.doi.org/10.14403/jcms.2024.37.1.1

TWO EXAMPLES OF LEFSCHETZ FIXED POINT FORMULA WITH RESPECT TO SOME BOUNDARY CONDITIONS

YOONWEON LEE*

ABSTRACT. The boundary conditions $\widetilde{\mathcal{P}}_0$ and $\widetilde{\mathcal{P}}_1$ were introduced in [5] by using the Hodge decomposition on the de Rham complex. In [6] the Atiyah-Bott-Lefschetz type fixed point formulas were proved on a compact Riemannian manifold with boundary for some special type of smooth functions by using these two boundary conditions. In this paper we slightly extend the result of [6] and give two examples showing these fixed point theorems.

1. Introduction

In this paper we are going to discuss the Atiyah-Bott-Lefschetz type fixed point formula on a compact Riemannian manifold with boundary with respective to some boundary conditions $\tilde{\mathcal{P}}_0$ and $\tilde{\mathcal{P}}_1$. In [5] R.-T. Huang and the author introduced new boundary conditions $\tilde{\mathcal{P}}_0$ and $\tilde{\mathcal{P}}_1$ for the odd signature operator acting on the space of smooth differential forms on a compact Riemannian manifold with boundary and in [6] they proved the Atiyah-Bott-Lefschetz type fixed point formulas for a special type of smooth functions with respect to the boundary conditions $\tilde{\mathcal{P}}_0$ and $\tilde{\mathcal{P}}_1$. In this paper we slightly extend the result of [6] and give two examples showing the results obtained in [6]. Hence, this paper is a continuation of [6]. For a self-contained presentation, some material in [6] will be repeated for a background explanation.

We begin with the Atiyah-Bott-Lefschetz fixed point formula on a compact closed Riemannian manifold given in [1] and its generalization to a compact Riemann manifold with boundary given in [3]. Let (M, g^M)

2020 Mathematics Subject Classification: Primary: 58J20; Secondary: 14F40.

Key words and phrases: Lefschetz fixed point formula, simple fixed point, attract-

Received February 13, 2024; Accepted February 23, 2024.

ing and repelling fixed points, de Rham cohomology, boundary condition. *This work was supported by INHA UNIVERSITY Research Grant.

be an *m*-dimensional compact closed Riemannian manifold and $f: M \to M$ be a smooth map. A point $x_0 \in M$ is called a simple fixed point of f if

(1.1)
$$f(x_0) = x_0, \quad \det(\operatorname{Id} - df(x_0)) \neq 0.$$

If x_0 is a simple fixed point, then the graph of f is transverse to $M \times M$ at (x_0, x_0) , which shows that simple fixed points are discrete. We define the Lefschetz number L(f) by

(1.2)
$$L(f) = \sum_{q=0}^{m} (-1)^q \operatorname{Tr} \left(f^* : H^q(M) \to H^q(M) \right),$$

where $H^q(M)$ is computed with the coefficient \mathbb{R} . All through this paper the cohomology groups including $H^q(M)$, $H^q(Y)$ and $H^q(M, Y)$ are computed with respect to \mathbb{R} so that we ignore the torsion parts. It is shown in [1] (see also [8]) that if f has only simple fixed points, then

(1.3)
$$L(f) = \sum_{f(x)=x} \operatorname{sign} \det \left(\operatorname{Id} - df(x) \right).$$

Let (M, Y, g^M) be a compact Riemannian manifold with boundary Yand $f: M \to M$ be a smooth map with $f(Y) \subset Y$. We assume that all fixed points of f are simple. On the boundary Y, we need one more ingredient. Let $f(x_0) = x_0$ with $x_0 \in Y$. Considering two maps $df(x_0): T_{x_0}M \to T_{x_0}M$ and $d(f|_Y)(x_0): T_{x_0}Y \to T_{x_0}Y$, there is a map

(1.4)
$$a_{x_0} := df(x_0) (\text{mod } T_{x_0}Y) : T_{x_0}M/T_{x_0}Y \to T_{x_0}M/T_{x_0}Y.$$

Since $T_{x_0}M/T_{x_0}Y$ is isomorphic to \mathbb{R} , if follows that a_{x_0} is a 1×1 matrix, which is a real number. Considering the map $f: M \to M$ with $f(Y) \subset Y$, a_{x_0} is a linear map from $[0, \infty)$ to $[0, \infty)$ and hence a_{x_0} is identified with a non-negative real number. Since x_0 is a simple fixed point, it follows that $a_{x_0} \neq 1$. A simple boundary fixed point x_0 is called *attracting* and *repelling* if $0 \leq a_{x_0} < 1$ and $a_{x_0} > 1$, respectively. We denote by $\mathcal{F}_0(f)$, $\mathcal{F}_Y^+(f)$ and $\mathcal{F}_Y^-(f)$ the set of all interior fixed points, attracting and repelling boundary fixed points of f, respectively. We

denote
$$\mathcal{F}_{Y}(f) = \mathcal{F}_{Y}^{+}(f) \cup \mathcal{F}_{Y}^{-}(f)$$
. It is shown in [3] that
(1.5) $\sum_{q=0}^{m} (-1)^{q} \operatorname{Tr} \left(f^{*} : H^{q}(M) \to H^{q}(M) \right)$
 $= \sum_{x \in \mathcal{F}_{0} \cup \mathcal{F}_{Y}^{+}(f)} \operatorname{sign} \det \det \left(\operatorname{Id} - df(x) \right),$
 $\sum_{q=0}^{m} (-1)^{q} \operatorname{Tr} \left(f^{*} : H^{q}(M, Y) \to H^{q}(M, Y) \right)$
 $= \sum_{x \in \mathcal{F}_{0} \cup \mathcal{F}_{Y}^{-}(f)} \operatorname{sign} \det \det \left(\operatorname{Id} - df(x) \right).$

As a reference, the Lefschetz fixed formula on a compact manifold with conical singularities was discussed in [2], which is irrelevant to this note.

On the other hand, new boundary conditions $\widetilde{\mathcal{P}}_0$ and $\widetilde{\mathcal{P}}_1$ were introduced in [5] and similar fixed point formulas were proved in [6] for a special type of smooth functions with respect to the boundary conditions $\widetilde{\mathcal{P}}_0$ and $\widetilde{\mathcal{P}}_1$. In the next section, we are going to review the boundary conditions $\widetilde{\mathcal{P}}_0$, $\widetilde{\mathcal{P}}_1$ and results obtained in [6]. In Section 3, we are going to give two examples showing these results.

2. The boundary conditions $\widetilde{\mathcal{P}}_0$, $\widetilde{\mathcal{P}}_1$ and de Rham complex $(\Omega^{\bullet}_{\widetilde{\mathcal{P}}_0/\widetilde{\mathcal{P}}_1}(M), d)$

The material in this section is not new and most parts are found in Section 2 of [6]. However, for a self-contained presentation, we are going to review some material of Section 2 in [6]. Furthermore, we are going to complete the proofs of some results which were skipped in Section 2 of [6], and extend the results slightly, which justifies this section.

Let (M, Y, g^M) be an *m*-dimensional compact oriented Riemannian manifold with boundary Y. We choose a collar neighborhood U of Y which is diffeomorphic to $[0, \epsilon) \times Y$. We denote by (u, y) the coordinate of $[0, \epsilon) \times Y$ and by du, $\frac{\partial}{\partial u}$ the one form and vector field which is normal to Y on U. We assume that the metric g^M on U is the product one so that

(2.1)
$$g^M|_U = du^2 + g^Y,$$

where g^Y is a Riemannian metric on $\{0\} \times Y$. We denote by d_q^Y : $\Omega^q(Y) \to \Omega^{q+1}(Y)$ the exterior derivative acting on smooth q-forms on

Y and \star_Y be the Hodge star operator on Y which is induced from the Hodge star operator \star_M on M by $d\operatorname{vol}(M) = du \wedge d\operatorname{vol}(Y)$. Then, the formal adjoint $(d_q^Y)^* : \Omega^{q+1}(Y) \to \Omega^q(Y)$ is defined by $(d_q^Y)^* = (-1)^{mq+q+1} \star_Y d_q^Y \star_Y$ and the Laplacian $\Delta_Y^q : \Omega^q(Y) \to \Omega^q(Y)$ is defined by $\Delta_Y^q = (d_q^Y)^* d_q^Y + d_{q-1}^Y (d_{q-1}^Y)^*$. It follows from the Hodge decomposition theorem that

(2.2)
$$\Omega^{q}(Y) = \operatorname{Im} d_{q-1}^{Y} \oplus \mathcal{H}^{q}(Y) \oplus \operatorname{Im} \left(d_{q}^{Y}\right)^{*},$$

where

(2.3)
$$\mathcal{H}^{q}(Y) = \ker \Delta_{Y}^{q} = \{\omega_{Y} \in \Omega^{q}(Y) \mid d_{q}^{Y} \omega_{Y} = (d_{q-1}^{Y})^{*} \omega_{Y} = 0\}.$$

Suppose that a q-form $\phi \in \Omega^q(M)$ satisfies $d_q \phi = d^*_{q-1} \phi = 0$, where $d_q : \Omega^q(M) \to \Omega^{q+1}(M)$ is the exterior derivative on M and $d^*_{q-1} = (-1)^{mq+m+1} \star_M d_{m-q} \star_M$ is the formal adjoint of d_{q-1} . Simple computation shows that ϕ restricted to $\{0\} \times Y$ is expressed by

(2.4)
$$\phi|_{Y} = \left(d_{q-1}^{Y}\varphi_{1} + \varphi_{2}\right) + du \wedge \left(\left(d_{q}^{Y}\right)^{*}\psi_{1} + \psi_{2}\right),$$
$$\varphi_{1}, \psi_{1} \in \Omega^{\bullet}(Y), \quad \varphi_{2}, \psi_{2} \in \mathcal{H}^{\bullet}(Y).$$

In other words, φ_2 and $\star_Y \psi_2$ are the harmonic parts of $\iota^* \phi$ and $\iota^*(\star_M \phi)$, where $\iota: Y \to M$ is the natural inclusion. We define

(2.5)
$$\mathcal{K}^q = \{\varphi_2 \in \mathcal{H}^q(Y) \mid d_q \phi = (d_{q-1})^* \phi = 0\}, \quad \mathcal{K} = \bigoplus_{q=0}^{m-1} \mathcal{K}^q.$$

Replacing ϕ with $\star_M \phi$ yields $\star_Y \psi_2 \in \mathcal{K}^{m-q}$, which leads to the following result.

(2.6)
$$\star_Y \mathcal{K}^{m-q} = \{ \psi_2 \in \mathcal{H}^q(Y) \mid d_q \phi = (d_{q-1})^* \phi = 0 \},$$
$$\star_Y \mathcal{K} = \bigoplus_{a=0}^{m-1} \star_Y \mathcal{K}^q.$$

In the next two lemmas, we are going to show that \mathcal{K} is exactly the half of $\mathcal{H}^{\bullet}(Y)$ and $\mathcal{K} \oplus \star_Y \mathcal{K} = \mathcal{H}^{\bullet}(Y)$ (cf. Corollary 8.4 in [7]).

Lemma 2.1.

$$\dim \mathcal{K} = \frac{1}{2} \dim \mathcal{H}^{\bullet}(Y).$$

Proof. We note the following long exact sequence.

$$(2.7) \longrightarrow H^q(M,Y) \xrightarrow{\alpha_q} H^q(M) \xrightarrow{\iota_q^*} H^q(Y) \xrightarrow{\beta_q} H^{q+1}(M,Y) \longrightarrow$$

Since \mathcal{K} is a harmonic part of $\iota^* \phi$ for $\phi \in \Omega^{\bullet}(M)$, it follows that dim $\mathcal{K} = \sum_{q=0}^{m-1} \dim \operatorname{Im} \iota_q^*$. We denote

(2.8)
$$H^q_+(M,Y) := H^q(M,Y) \oplus H^q_-(M,Y), \quad H^{q+1}_-(M,Y) := \operatorname{Im} \beta_q,$$

so that $H^q(M,Y) = H^q_+(M,Y) \oplus H^q_-(M,Y).$ It follows that
(2.0) dim $H^q(M)$ dim $H^q_-(M,Y) \oplus \dim W^*$

(2.9)
$$\dim H^q(M) = \dim H^q_+(M,Y) + \dim \operatorname{Im} \iota_q^*,$$
$$\dim H^q(Y) = \dim H^{q+1}_-(M,Y) + \dim \operatorname{Im} \iota_q^*,$$

which leads to

$$(2.10) \qquad \sum_{q=0}^{m-1} \dim H^q(Y) = \sum_{q=0}^{m-1} \left(\dim H^{q+1}_{-}(M,Y) + \dim \operatorname{Im} \iota^*_q \right) \\ = \sum_{q=0}^{m-1} \left(\dim H^{q+1}(M,Y) - \dim H^{q+1}_{+}(M,Y) + \dim \operatorname{Im} \iota^*_q \right) \\ = \sum_{q=0}^{m-1} \left(\dim H^{q+1}(M,Y) - \dim H^{q+1}(M) + \operatorname{Im} \iota^*_{q+1} + \dim \operatorname{Im} \iota^*_q \right) \\ = \sum_{q=1}^m \dim H^q(M,Y) - \sum_{q=1}^m \dim H^q(M) \\ + \sum_{q=1}^m \dim \operatorname{Im} \iota^*_q + \sum_{q=0}^{m-1} \dim \operatorname{Im} \iota^*_q.$$

Since $H^0(M,Y) = 0$ and $H^0(M) = \mathbb{R}$, it follows from the Lefschetz-Poincaré duality that

(2.11)
$$\sum_{q=1}^{m} \dim H^{q}(M,Y) - \sum_{q=1}^{m} \dim H^{q}(M) = 1.$$

Since $\iota_0^*: H^0(M) \to H^0(Y)$ is an isomorphism, it follows that $\dim {\rm Im} \ \iota_0^* = 1,$ which leads to

(2.12)
$$\sum_{q=0}^{m-1} \dim H^q(Y) = 1 + \sum_{q=1}^m \dim \operatorname{Im} \iota_q^* + \sum_{q=0}^{m-1} \dim \operatorname{Im} \iota_q^*$$
$$= 2 \sum_{q=0}^{m-1} \dim \operatorname{Im} \iota_q^*.$$

This completes the proof of the lemma.

LEMMA 2.2. \mathcal{K} is orthogonal to $\star_Y \mathcal{K}$, and hence $\mathcal{K} \oplus \star_Y \mathcal{K} = \mathcal{H}^{\bullet}(Y)$.

Proof. For any $\phi \in \Omega^q(M)$ and $\omega \in \Omega^{q+1}(M)$ satisfying $d_q \phi =$ $d_{q-1}^*\phi = 0$ and $d_{q+1}\omega = d_q^*\omega = 0$, it follows that

(2.13)
$$\begin{aligned} \phi|_{Y} &= \left(d_{q-1}^{Y}\varphi_{1} + \varphi_{2}\right) + du \wedge \left(\left(d_{q}^{Y}\right)^{*}\psi_{1} + \psi_{2}\right), \\ \varphi_{1}, \psi_{1} \in \Omega^{\bullet}(Y), \quad \varphi_{2}, \psi_{2} \in \mathcal{H}^{\bullet}(Y), \\ \omega|_{Y} &= \left(d_{q-1}^{Y}\omega_{1} + \omega_{2}\right) + du \wedge \left(\left(d_{q}^{Y}\right)^{*}\eta_{1} + \eta_{2}\right), \\ \omega_{1}, \eta_{1} \in \Omega^{\bullet}(Y), \quad \omega_{2}, \eta_{2} \in \mathcal{H}^{\bullet}(Y). \end{aligned}$$

Then, $\varphi_2, \omega_2 \in \mathcal{K}$ and $\psi_2, \eta_2 \in \star_Y \mathcal{K}$. In fact, $\varphi_2 \in \mathcal{K}^q$ and $\eta_2 \in \star_Y \mathcal{K}^{m-1-q}$. It is enough to show that

(2.14)
$$\langle \varphi_2, \eta_2 \rangle_Y := \int_Y \varphi_2 \wedge \star_Y \eta_2 = 0.$$

Since $d_{m-q-1}(\star_M \omega) = 0$, it follows by Stokes' theorem that

(2.15)
$$0 = \int_{M} d_{q}\phi \wedge \star_{M}\omega = \int_{M} d_{m-1}(\phi \wedge \star_{M}\omega) = \int_{Y} \iota^{*}\phi \wedge \iota^{*}(\star_{M}\omega)$$
$$= \int_{Y} \left(d_{q-1}^{Y}\varphi_{1} + \varphi_{2} \right) \wedge \star_{Y} \left(\left(d_{q}^{Y} \right)^{*}\eta_{1} + \eta_{2} \right) = \int_{Y} \varphi_{2} \wedge \star_{Y}\eta_{2},$$
which completes the proof of the lemma.

which completes the proof of the lemma.

Near the boundary Y, a q-form $\omega \in \Omega^q(M)$ can be expressed by $\omega = \omega_1 + du \wedge \omega_2$, where $\iota_{\frac{\partial}{\partial u}} \omega_1 = \iota_{\frac{\partial}{\partial u}} \omega_2 = 0$. We denote ω by

(2.16)
$$\omega = \omega_1 + du \wedge \omega_2 = (\omega_1, \ \omega_2).$$

We denote $\mathcal{L}_0 = (\mathcal{K}, \mathcal{K})$ and $\mathcal{L}_1 = (\star_Y \mathcal{K}, \star_Y \mathcal{K})$ and define the orthogonal projections

(2.17)
$$\mathcal{P}_{-,\mathcal{L}_{0}}, \mathcal{P}_{+,\mathcal{L}_{1}} : \Omega^{\bullet}(Y) \oplus \Omega^{\bullet}(Y) \to \Omega^{\bullet}(Y) \oplus \Omega^{\bullet}(Y),$$
$$\operatorname{Im} \mathcal{P}_{-,\mathcal{L}_{0}} = \left(\operatorname{Im} d^{Y} \oplus \mathcal{K}, \operatorname{Im} d^{Y} \oplus \mathcal{K}\right),$$
$$\operatorname{Im} \mathcal{P}_{+,\mathcal{L}_{1}} = \left(\operatorname{Im}(d^{Y})^{*} \oplus \star_{Y} \mathcal{K}, \operatorname{Im}(d^{Y})^{*} \oplus \star_{Y} \mathcal{K}\right).$$

It is straightforward that

(2.18) $\Omega^{\bullet}(Y) \oplus \Omega^{\bullet}(Y) = \operatorname{Im} \mathcal{P}_{-,\mathcal{L}_{0}} \oplus \operatorname{Im} \mathcal{P}_{+,\mathcal{L}_{1}}, \star_{Y} \operatorname{Im} \mathcal{P}_{-,\mathcal{L}_{0}} = \operatorname{Im} \mathcal{P}_{+,\mathcal{L}_{1}},$

which shows that $\Omega^{\bullet}(Y) \oplus \Omega^{\bullet}(Y)$ is a symplectic vector space with Lagrangian subspaces $\operatorname{Im} \mathcal{P}_{-,\mathcal{L}_0}$ and $\operatorname{Im} \mathcal{P}_{+,\mathcal{L}_1}$. We define an involution $\Gamma: \Omega^q(M) \to \Omega^q(M)$ by

(2.19)
$$\Gamma \omega := i^{\left[\frac{m+1}{2}\right]} (-1)^{\frac{q(q+1)}{2}} \star_M \omega.$$

Then, Γ satisfies $\Gamma^2 = \text{Id.}$ We define the odd signature operator by

(2.20)
$$\mathcal{D}_M : \Omega^{\bullet}(M) \to \Omega^{\bullet}(M), \qquad \mathcal{D}_M = d\Gamma + \Gamma d.$$

It is straightforward that

(2.21)
$$\mathcal{D}_M^2 = \Delta_M^q = d_q^* d_q + d_{q-1} d_{q-1}^*.$$

It is shown in Lemma 2.15 of [5] that $\mathcal{P}_{-,\mathcal{L}_0}$ and $\mathcal{P}_{+,\mathcal{L}_1}$ are well posed boundary conditions for the odd signature operator \mathcal{D}_M . Then, \mathcal{D}_M with the boundary condition $\mathcal{P}_{-,\mathcal{L}_0}$ or $\mathcal{P}_{+,\mathcal{L}_1}$ has a discrete spectrum. In particular, Δ_M^q with the boundary condition $\mathcal{P}_{-,\mathcal{L}_0}$ or $\mathcal{P}_{+,\mathcal{L}_1}$ has a discrete spectrum. We define

(2.22)
$$\Omega_{\mathcal{P}_{-,\mathcal{L}_{0}}}^{q,\infty}(M) = \left\{ \phi \in \Omega^{q}(M) \mid \mathcal{P}_{-,\mathcal{L}_{0}}\left(\left(\mathcal{D}_{M}^{\ell}\phi\right)|_{Y}\right) = 0, \ell = 0, 1, 2, \cdots \right\},$$
$$\Omega_{\mathcal{P}_{+,\mathcal{L}_{1}}}^{q,\infty}(M) = \left\{ \phi \in \Omega^{q}(M) \mid \mathcal{P}_{+,\mathcal{L}_{1}}\left(\left(\mathcal{D}_{M}^{\ell}\phi\right)|_{Y}\right) = 0, \ell = 0, 1, 2, \cdots \right\}.$$

For example, an eigenform ω of Δ_M^q satisfying $\mathcal{P}_{-,\mathcal{L}_0}(\omega) = \mathcal{P}_{-,\mathcal{L}_0}(\mathcal{D}_M\omega) = 0$ $(\mathcal{P}_{+,\mathcal{L}_1}(\omega) = \mathcal{P}_{+,\mathcal{L}_1}(\mathcal{D}_M\omega) = 0)$ belongs to $\Omega_{\mathcal{P}_{-,\mathcal{L}_0}}^{q,\infty}(M)$ $(\Omega_{\mathcal{P}_{+,\mathcal{L}_1}}^{q,\infty}(M))$. Simple computation shows that for each q the exterior derivative d maps $\Omega_{\mathcal{P}_{-,\mathcal{L}_0}}^{q,\infty}(M)$ and $\Omega_{\mathcal{P}_{+,\mathcal{L}_1}}^{q,\infty}(M)$ into $\Omega_{\mathcal{P}_{+,\mathcal{L}_1}}^{q,\infty}(M)$ $\Omega_{\mathcal{P}_{-,\mathcal{L}_0}}^{q,\infty}(M)$, respectively, *i.e.*

$$d: \Omega^{q,\infty}_{\mathcal{P}_{-,\mathcal{L}_{0}}}(M) \to \Omega^{q,\infty}_{\mathcal{P}_{+,\mathcal{L}_{1}}}(M), \quad d: \Omega^{q,\infty}_{\mathcal{P}_{+,\mathcal{L}_{1}}}(M) \to \Omega^{q,\infty}_{\mathcal{P}_{-,\mathcal{L}_{0}}}(M).$$

Keeping these facts in mind, we define two de Rham comlexes as follows.

$$(2.23) \qquad (\Omega^{\bullet,\infty}_{\widetilde{\mathcal{P}}_0}(M), d): 0 \longrightarrow \Omega^{0,\infty}_{\mathcal{P}_{-,\mathcal{L}_0}}(M) \xrightarrow{d} \Omega^{1,\infty}_{\mathcal{P}_{+,\mathcal{L}_1}}(M) \xrightarrow{d} \Omega^{2,\infty}_{\mathcal{P}_{-,\mathcal{L}_0}}(M) \xrightarrow{d} \cdots \longrightarrow 0. (\Omega^{\bullet,\infty}_{\widetilde{\mathcal{P}}_1}(M), d): 0 \longrightarrow \Omega^{0,\infty}_{\mathcal{P}_{+,\mathcal{L}_1}}(M) \xrightarrow{d} \Omega^{1,\infty}_{\mathcal{P}_{-,\mathcal{L}_0}}(M) \xrightarrow{d} \Omega^{2,\infty}_{\mathcal{P}_{+,\mathcal{L}_1}}(M) \xrightarrow{d} \cdots \longrightarrow 0.$$

We define two Hodge Laplacians $\Delta_{M,\widetilde{\mathcal{P}}_0}^q$ and $\Delta_{M,\widetilde{\mathcal{P}}_1}^q$ with respect to $\widetilde{\mathcal{P}}_0$ and $\widetilde{\mathcal{P}}_1$ by

$$(2.24) \qquad \Delta^{q}_{M,\widetilde{\mathcal{P}}_{0}} := d^{*}_{q} d_{q} + d_{q-1} d^{*}_{q-1},$$

$$\operatorname{Dom} \left(\Delta^{q}_{\widetilde{\mathcal{P}}_{0}} \right) = \Omega^{q,\infty}_{\widetilde{\mathcal{P}}_{0}}(M) := \begin{cases} \Omega^{q,\infty}_{\mathcal{P}_{-,\mathcal{L}_{0}}}(M) & \text{for } q \text{ even} \\ \Omega^{q,\infty}_{\mathcal{P}_{+,\mathcal{L}_{1}}}(M) & \text{for } q \text{ odd.} \end{cases}$$

$$\Delta^{q}_{M,\widetilde{\mathcal{P}}_{1}} := d^{*}_{q} d_{q} + d_{q-1} d^{*}_{q-1},$$

$$\operatorname{Dom} \left(\Delta^{q}_{\widetilde{\mathcal{P}}_{1}} \right) = \Omega^{q,\infty}_{\widetilde{\mathcal{P}}_{1}}(M) := \begin{cases} \Omega^{q,\infty}_{\mathcal{P}_{+,\mathcal{L}_{1}}}(M) & \text{for } q \text{ even} \\ \Omega^{q,\infty}_{\mathcal{P}_{-,\mathcal{L}_{0}}}(M) & \text{for } q \text{ odd.} \end{cases}$$

The following lemma is straightforward (see Lemma 2.4 in [6]).

LEMMA 2.3. The cohomologies of the complex $(\Omega^{\bullet,\infty}_{\widetilde{\mathcal{P}}_0/\widetilde{\mathcal{P}}_1}(M), d)$ are given as follows.

$$H^{q}((\Omega^{\bullet,\infty}_{\widetilde{\mathcal{P}}_{0}}(M), d)) = \ker \Delta^{q}_{\widetilde{\mathcal{P}}_{0}} = \begin{cases} H^{q}(M, Y) & \text{if } q \text{ is even} \\ H^{q}(M) & \text{if } q \text{ is odd,} \end{cases}$$
$$H^{q}((\Omega^{\bullet,\infty}_{\widetilde{\mathcal{P}}_{1}}(M), d)) = \ker \Delta^{q}_{\widetilde{\mathcal{P}}_{1}} = \begin{cases} H^{q}(M) & \text{if } q \text{ is even} \\ H^{q}(M, Y) & \text{if } q \text{ is odd.} \end{cases}$$

By analyzing the heat traces $\sum_{q=0}^{m} (-1)^q \operatorname{Tr} \left(f^* e^{-t \Delta_{M,\tilde{\mathcal{P}}_0}^q} \right)$ and $\sum_{q=0}^{m} (-1)^q \operatorname{Tr} \left(f^* e^{-t \Delta_{M,\tilde{\mathcal{P}}_1}^q} \right)$, the following is obtained, which is the main result of [6].

THEOREM 2.4. Let (M, Y, g^M) and $f: M \to M$ be as above. On a collar neighborhood U of Y and for $0 \leq c \in \mathbb{R}, c \neq 1$, we assume that $f(u, y) = (cu + u^2 \kappa(u), B(y))$ for some smooth function $\kappa : [0, \epsilon) \to [0, \epsilon)$, and $B(y)^* : \Omega^{\bullet}(Y) \to \Omega^{\bullet}(Y)$ maps $\operatorname{Im} \mathcal{P}_{-,\mathcal{L}_0}$ and $\operatorname{Im} \mathcal{P}_{+,\mathcal{L}_1}$ into $\operatorname{Im} \mathcal{P}_{-,\mathcal{L}_0}$ and $\operatorname{Im} \mathcal{P}_{+,\mathcal{L}_1}$, respectively. Then,

(1)
$$\sum_{q=\text{even}} \text{Tr} \left(f^* : H^q(M, Y) \to H^q(M, Y)\right)$$
$$- \sum_{q=\text{odd}} \text{Tr} \left(f^* : H^q(M) \to H^q(M)\right)$$
$$= \sum_{x \in \mathcal{F}_0(f)} \text{sign det}(I - df(x))$$
$$+ \frac{1}{2} \operatorname{sign}(1 - c) \sum_{y \in \mathcal{F}_Y(f)} \text{sign det}(I - df_Y(y)) + \frac{1}{2}k_0,$$
(2)
$$\sum_{q=\text{even}} \text{Tr} \left(f^* : H^q(M) \to H^q(M)\right)$$
$$- \sum_{q=\text{odd}} \text{Tr} \left(f^* : H^q(M, Y) \to H^q(M, Y)\right)$$
$$= \sum_{x \in \mathcal{F}_0(f)} \text{sign det}(I - df(x))$$
$$+ \frac{1}{2} \operatorname{sign}(1 - c) \sum_{y \in \mathcal{F}_Y(f)} \text{sign det}(I - df_Y(y)) - \frac{1}{2}k_0,$$
where $k_0 = \text{Tr} \left(B^* : \star_Y \mathcal{K} \to \star_Y \mathcal{K}\right) - \text{Tr} \left(B^* : \mathcal{K} \to \mathcal{K}\right).$

Remark: (1) Theorem 2.4 was proved in [6] when $\kappa(u) = 0$, c > 1 and $B(y) : Y \to Y$ is a local isometry. However, the theorem can be easily extended to this case.

(2) So far, we do not know how to extend Theorem 2.4 to a wider class of smooth functions.

3. Examples of Lefschetz fixed point formula on the complex $(\Omega^{\bullet,\infty}_{\widetilde{\mathcal{P}}_0/\widetilde{\mathcal{P}}_1}(M),\ d)$

In this section, we are going to give two examples showing Theorem 2.4. The first one is the following. Let $S^1 = \{e^{i\theta} \mid 0 \le \theta \le 2\pi\}$ be the round circle and $h: S^1 \to S^1$ be defined by $h(e^{i\theta}) = e^{ki\theta}$ for $2 \le k \in \mathbb{N}$. Then, h has k-1 fixed points at $\{e^{\frac{2\pi\ell}{k-1}i} \mid \ell = 0, 1, \cdots, k-2\}$. We note that for $y_\ell = e^{\frac{2\pi\ell}{k-1}i}$, $dh(x_\ell): T_{y_\ell}S^1 \to T_{y_\ell}S^1$ is given by $dh(y_\ell)(v) = kv$.

For $1 \leq n \in \mathbb{N}$, we denote by $T^n = S^1 \times \cdots \times S^1$ the *n*-th product of S^1 and give the usual flat product metric on T^n . For $(k_1, \cdots, k_n) \in \mathbb{N}^n$ with $k_j \geq 2$, we define

(3.1)
$$f: T^n \to T^n, \quad f(e^{i\theta_1}, \cdots, e^{i\theta_n}) = (e^{ik_1\theta_1}, \cdots, e^{ik_n\theta_n}).$$

Then, f has $(k_1-1)\cdots(k_n-1)$ fixed points. At each fixed point $y \in T^n$, it follows that

(3.2)
$$df(y): T_yT^n \to T_yT^n, \quad df(y) = \begin{pmatrix} k_1 & 0 & 0 & 0 \\ 0 & k_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & k_n \end{pmatrix},$$

which shows that

(3.3)
$$\operatorname{sign} (\operatorname{Id} - df(y)) = (-1)^n.$$

We denote $M = [0,1] \times T^n$ with the usual flat product metric. Then, the boundary is $Y = \{0\} \times T^n \cup \{1\} \times T^n$. We choose a smooth function $\rho : [0,1] \to [0,1]$ such that ρ has exactly 3 fixed points at 0, u_0 , 1 with $0 < u_0 < 1$ and

(3.4)
$$\rho(0) = 0, \quad \rho(u_0) = u_0, \quad \rho(1) = 1, \\ 0 \le \rho'(0) < 1, \quad \rho'(u_0) > 1, \quad 0 \le \rho'(1) < 1.$$

We define

(3.5)
$$F: [0,1] \times T^n \to [0,1] \times T^n, \quad F(u,y) = (\rho(u), f(y)).$$

Then, F has $3(k_1-1)\cdots(k_n-1)$ fixed points. There are $(k_1-1)\cdots(k_n-1)$ interior fixed points and $2(k_1-1)\cdots(k_n-1)$ attracting boundary fixed points. At the interior fixed points, it follows that

(3.6)
$$\sum_{(u_0,y)\in\mathcal{F}_0(F)} \operatorname{sign} \left(\operatorname{Id} - dF(u_0,y) \right) = -\sum_{y\in\mathcal{F}_0(f)} \operatorname{sign} \left(\operatorname{Id} - df(y) \right) \\ = (-1)^{n+1} (k_1 - 1) \cdots (k_n - 1)$$

At the boundary fixed points, it follows that

(3.7)

$$\sum_{(0,y),(1,y)\in\mathcal{F}_Y^+(F)} \operatorname{sign} \left(\operatorname{Id} - dF(u_1, y)\right) = 2 \sum_{y\in\mathcal{F}_0(f)} \operatorname{sign} \left(\operatorname{Id} - df(y)\right)$$

$$= (-1)^n 2(k_1 - 1) \cdots (k_n - 1)$$

where $u_1 = 0$ or 1. Hence, it follows that (3.8)

$$\sum_{\substack{(u,y)\in\mathcal{F}_{0}(F)\cup\mathcal{F}_{Y}^{+}(F)\\(u,y)\in\mathcal{F}_{0}(F)\cup\mathcal{F}_{Y}^{-}(F)}}\operatorname{sign}\left(\operatorname{Id}-dF(u,y)\right) = (-1)^{n}(k_{1}-1)\cdots(k_{n}-1),$$
$$\sum_{\substack{(u,y)\in\mathcal{F}_{0}(F)\cup\mathcal{F}_{Y}^{-}(F)}}\operatorname{sign}\left(\operatorname{Id}-dF(u,y)\right) = -\sum_{y\in\mathcal{F}_{0}(f)}\operatorname{sign}\left(\operatorname{Id}-df(y)\right)$$
$$= (-1)^{n+1}(k_{1}-1)\cdots(k_{n}-1).$$

We are now going to compute $H^q(M)$ by using the de Rham complex. We consider the de Rham complex

(3.9)
$$\rightarrow \Omega^{q-1}(M) \xrightarrow{d_{q-1}} \Omega^q(M) \xrightarrow{d_q} \Omega^{q+1}(M) \rightarrow$$

A q-form $\omega \in \Omega^q(M)$ can be expressed by $\omega = \omega_1 + du \wedge \omega_2$, where $\iota_{\frac{\partial}{\partial u}}\omega_1 = \iota_{\frac{\partial}{\partial u}}\omega_2 = 0$ with $\frac{\partial}{\partial u}$ the unit vector field normal to Y. Let $\iota: Y \to M$ be the natural inclusion. If $\omega_2|_Y = \iota^*\omega_2 = 0$, then ω is said to satisfy the absolute boundary condition. If $\omega_1|_Y = \iota^*\omega = 0$, then ω is said to satisfy the relative boundary condition. Let $\Omega^q_{\rm nor}(M)$ and $\Omega^q_{\rm tan}(M)$ be the space of all smooth q-forms satisfying the absolute and relative boundary conditions, respectively. Then, it is well known (for example, Theorem 2.7.3 in [4]) that

(3.10)
$$H^q(M) \cong \mathcal{H}^q(M) := \{ \omega \in \Omega^q_{\mathrm{nor}}(M) \mid d\omega = d^*\omega = 0 \},$$
$$H^q(M,Y) \cong \mathcal{H}^q(M,Y) := \{ \omega \in \Omega^q_{\mathrm{tan}}(M) \mid d\omega = d^*\omega = 0 \}.$$

We denote

(3.11)
$$d\vartheta_j = (0, 0, \cdots, d\theta, 0, \cdots, 0) \in \Omega^1(M).$$

Then, $\{d\vartheta_{j_1} \wedge \cdots \wedge d\vartheta_{j_q} \mid 1 \leq j_1 < \cdots < j_q \leq n\}$ is an orthogonal basis of $\mathcal{H}^q(M)$ and $\{du \wedge d\vartheta_{j_1} \wedge \cdots \wedge d\vartheta_{j_{q-1}} \mid 1 \leq j_1 < \cdots < j_{q-1} \leq n\}$ is an orthogonal basis of $\mathcal{H}^q(M, Y)$, which leads to the following facts.

LEMMA 3.1. $H^{q}(M) \cong \mathbb{R}^{\binom{n}{q}} \cong \mathbb{R}^{\frac{n!}{q!(n-q)!}}, \qquad H^{q}(M,Y) \cong \mathbb{R}^{\binom{n}{q-1}} \cong \mathbb{R}^{\frac{n!}{(q-1)!(n-q+1)!}},$ $F^{*}: H^{q}(M) \to H^{q}(M),$ $F^{*}(d\vartheta_{j_{1}} \wedge \dots \wedge d\vartheta_{j_{q}}) = k_{j_{1}} \cdots k_{j_{q}} d\vartheta_{j_{1}} \wedge \dots \wedge d\vartheta_{j_{q}},$ $F^{*}: H^{q}(M,Y) \to H^{q}(M,Y),$ $F^{*}(du \wedge d\vartheta_{j_{1}} \wedge \dots \wedge d\vartheta_{j_{q-1}}) = k_{j_{1}} \cdots k_{j_{q-1}} du \wedge d\vartheta_{j_{1}} \wedge \dots \wedge d\vartheta_{j_{q-1}}.$

Lemma 3.1 leads to the following result.

$$(3.12)$$

$$\sum_{q=0}^{n+1} (-1)^q \operatorname{Tr} \left(F^* : \mathcal{H}^q(M) \to \mathcal{H}^q(M) \right) = \sum_{q=0}^n (-1)^q \sum_{1 \le j_1 < \dots < j_q \le n} k_{j_1} \cdots k_{j_q}$$

$$= (1 - k_1)(1 - k_2) \cdots (1 - k_n) = (-1)^n (k_1 - 1)(k_2 - 1) \cdots (k_n - 1),$$

$$\sum_{q=0}^{n+1} (-1)^q \operatorname{Tr} \left(F^* : \mathcal{H}^q(M, Y) \to \mathcal{H}^q(M, Y) \right)$$

$$= \sum_{q=0}^{n+1} (-1)^q \sum_{1 \le j_1 < \dots < j_q \le n} k_{j_1} \cdots k_{j_q - 1}$$

$$= -\sum_{q=0}^n (-1)^q \sum_{1 \le j_1 < \dots < j_q \le n} k_{j_1} \cdots k_{j_q} = -(1 - k_1)(1 - k_2) \cdots (1 - k_n)$$

$$= (-1)^{n+1} (k_1 - 1)(k_2 - 1) \cdots (k_n - 1).$$

Eq.(3.12) together with (3.8) shows (1.5).

On the other hand, since $c = \rho'(0)$ or $\rho'(1)$, it follows that 0 < c < 1. Hence,

(3.13)

$$\sum_{(u_0,y)\in\mathcal{F}_0(F)} \operatorname{sign} \det(I - dF(u_0,y)) + \frac{1}{2} \sum_{y\in\mathcal{F}_0(f)} \operatorname{sign} \det(I - df(y))$$

$$= (-1)^{n+1}(k_1 - 1) \cdots (k_n - 1)$$

$$+ \frac{1}{2} \cdot 2 \cdot (-1)^n (k_1 - 1) \cdots (k_n - 1) = 0.$$

We note that

$$(3.14)$$

$$\sum_{q=\text{even}} \text{Tr} \left(F^* : H^q(M, Y) \to H^q(M, Y) \right) = \sum_{q=\text{even}} \sum_{1 \le j_1 < \dots < j_{q-1} \le n} k_{j_1} \cdots k_{j_{q-1}}$$

$$= \sum_{q=\text{odd}} \sum_{1 \le j_1 < \dots < j_q \le n} k_{j_1} \cdots k_{j_q} = \sum_{q=\text{odd}} \text{Tr} \left(F^* : H^q(M) \to H^q(M) \right),$$

$$\sum_{q=\text{odd}} \text{Tr} \left(F^* : H^q(M, Y) \to H^q(M, Y) \right) = \sum_{q=\text{odd}} \sum_{1 \le j_1 < \dots < j_{q-1} \le n} k_{j_1} \cdots k_{j_{q-1}}$$

$$= \sum_{q=\text{even}} \sum_{1 \le j_1 < \dots < j_q \le n} k_{j_1} \cdots k_{j_q} = \sum_{q=\text{even}} \text{Tr} \left(F^* : H^q(M) \to H^q(M) \right),$$

which shows that

$$(3.15) \qquad \sum_{q=\text{even}} \text{Tr} \left(F^* : H^q(M, Y) \to H^q(M, Y)\right) \\ -\sum_{q=\text{odd}} \text{Tr} \left(F^* : H^q(M) \to H^q(M)\right) = 0,$$
$$\sum_{q=\text{odd}} \text{Tr} \left(F^* : H^q(M) \to H^q(M)\right) \\ -\sum_{q=\text{odd}} \text{Tr} \left(F^* : H^q(M, Y) \to H^q(M, Y)\right) = 0.$$

We finally consider \mathcal{K}^q and $\star_Y \mathcal{K}^q$. We note that $M = [0,1] \times T^n$ and $Y = \{0\} \times T^n \cup \{1\} \times T^n$. We denote $\iota_0 : \{0\} \times T^n \to M$ and $\iota_1 : \{1\} \times T^n \to M$. Then, $(\iota_0, \iota_1) : Y \to M$ is the natural inclusion. The harmonic space $\mathcal{H}^{\bullet}(M)$ on M is given by

(3.16)
$$\mathcal{H}^{\bullet}(M) = \bigoplus_{q=0}^{n} \{ d\vartheta_{j_1} \wedge \dots \wedge d\vartheta_{j_q} \mid 1 \le j_1 < \dots < j_q \le n \}$$
$$\subset \Omega^{\bullet}(M).$$

Then, \mathcal{K}^q is given by

(3.17)
$$\mathcal{K}^{q} = \{ \left(d\vartheta_{j_{1}} \wedge \dots \wedge d\vartheta_{j_{q}}, d\vartheta_{j_{1}} \wedge \dots \wedge d\vartheta_{j_{q}} \right) \mid 1 \leq j_{1} < \dots < j_{q} \leq n \} \\ \subset \Omega^{\bullet}(T^{n}) \oplus \Omega^{\bullet}(T^{n}).$$

We note that an orientation of $\{0\} \times T^n$ is opposite to an orientation of $\{1\} \times T^n$. We choose and fix an orientation $d \operatorname{vol}(T^n)$ of $\{0\} \times T^n$ induced from an orientation of M. Then, the orientation of $\{1\} \times T^n$ is $-d \operatorname{vol}(T^n)$. Hence,

(3.18)
$$\star_Y \mathcal{K}^q = \{ (\star_{T^n} \omega, -\star_{T^n} \omega) \mid (\omega, \omega) \in \mathcal{K}^q \}.$$

Since B(y) = f(y), it follows that

$$\begin{aligned} (3.19) \\ B^* &= f^* : \mathcal{K}^q \to \mathcal{K}^q, \\ f^* \left(d\vartheta_{j_1} \wedge \dots \wedge d\vartheta_{j_q}, \ d\vartheta_{j_1} \wedge \dots \wedge d\vartheta_{j_q} \right) \\ &= k_{j_1} \cdots k_{j_q} \left(d\vartheta_{j_1} \wedge \dots \wedge d\vartheta_{j_q}, \ d\vartheta_{j_1} \wedge \dots \wedge d\vartheta_{j_q} \right), \\ B^* &= f^* : \star_Y \mathcal{K}^{n-q} \to \star_Y \mathcal{K}^{n-q}, \\ f^* \left(\star_{T^n} d\vartheta_{i_1} \wedge \dots \wedge d\vartheta_{i_{n-q}}, \ - \star_{T^n} d\vartheta_{i_1} \wedge \dots \wedge d\vartheta_{i_{n-q}} \right) \\ &= k_{j_1} \cdots k_{j_q} \left(\star_{T^n} d\vartheta_{i_1} \wedge \dots \wedge d\vartheta_{i_{n-q}}, \ - \star_{T^n} d\vartheta_{i_1} \wedge \dots \wedge d\vartheta_{i_{n-q}} \right), \end{aligned}$$

where $\{i_1, \cdots, i_{n-q}\} = \{1, 2, \cdots, n\} - \{j_1, \cdots, j_q\}$. This shows that (3.20) $k_0 = \operatorname{Tr}\left(B^* : \star_Y \mathcal{K} \to \star_Y \mathcal{K}\right) - \operatorname{Tr}\left(B^* : \mathcal{K} \to \mathcal{K}\right) = 0,$

which together with (3.13) and (3.15) shows Theorem 2.4.

The second example is the following. We denote $\mathbb{D}^2 = \{z = x + iy \mid x^2 + y^2 \leq 1\} \subset \mathbb{C}$ and define $f : \mathbb{D}^2 \to \mathbb{D}^2$ by $f(z) = z^n$ for $n \in \mathbb{N}$. Then, f(z) has n fixed points, which are z = 0 and $z = e^{\frac{2\pi\ell}{n-1}i}$, $\ell = 0, 1, 2, \cdots, n-2$. Simple computation shows that

(3.21)
$$df(0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad df(e^{\frac{2\pi\ell}{n-1}i}) = \begin{pmatrix} n & 0 \\ 0 & n \end{pmatrix},$$

which shows that

(3.22) sign det(Id
$$-df(0)$$
) = sign det(Id $-df(e^{\frac{2\pi\ell}{n-1}i})$) = 1.

We choose a Riemann metric on \mathbb{D}^2 , which is a product one on a collar neighborhood $U = (\epsilon_0, 1] \times S^1$ of the boundary. For $\epsilon_1 = \epsilon_0^{\frac{1}{n}}$, it follows that

(3.23)
$$f|_U: (\epsilon_1, 1] \times S^1 \to (\epsilon_0, 1] \times S^1, \qquad f(r, e^{i\theta}) = (r^n, e^{in\theta}),$$

which shows that all the boundary fixed points are repelling. We define $\phi_0: (\epsilon_0, 1] \to [0, 1 - \epsilon_0)$ by $\phi_0(r) = 1 - r$ and $\phi_1: (\epsilon_1, 1] \to [0, 1 - \epsilon_1)$ by $\phi_1(r) = 1 - r$. Then, $f|_U$ can be rewritten by

$$\widetilde{f|_U}: [0, 1-\epsilon_1) \times S^1 \to [0, 1-\epsilon_1) \times S^1,$$

$$\widetilde{f|_U}(r, e^{i\theta}) = (1-(1-r)^n, e^{in\theta}) = (nr+r^2\kappa(u), e^{in\theta}),$$

where $\kappa(u) = \frac{1}{r^2} \left\{ 1 - (1-r)^n - nr \right\}$. We denote $f_Y := f|_{S^1}$ and note that

(3.24)
$$f_Y: S^1 \to S^1, \qquad f_Y(e^{i\theta}) = e^{in\theta},$$

which shows that for $y_{\ell} = e^{\frac{2\pi\ell}{n-1}i}$,

(3.25)
$$df_Y(y_\ell): T_{y_\ell}S^1 \to T_{y_\ell}S^1, \qquad df_Y(y_\ell)(v) = nv,$$

and sign det $(\operatorname{Id} - df_Y(y_\ell)) = -1$. Hence, we obtain the following.

(3.26)
$$\sum_{x \in \mathcal{F}_0(f)} \operatorname{sign} \det(\operatorname{Id} - df(x)) = 1,$$
$$\sum_{x \in \mathcal{F}_0(f) \cup \mathcal{F}_Y^-(f)} \operatorname{sign} \det(\operatorname{Id} - df(x)) = 1 + (n-1) = n,$$
$$\sum_{y \in \mathcal{F}_0(f_Y)} \operatorname{sign} \det(\operatorname{Id} - df_Y(y)) = -(n-1).$$

We note that

(3.27)
$$\mathcal{K} = \{ \text{constant functions} \}, \quad \star_Y \mathcal{K} = \{ r d\theta \mid r \in \mathbb{R} \},$$

which shows that

$$(3.28) B^* = f_Y^* : \star_Y \mathcal{K} \to \star_Y \mathcal{K}, f_Y^*(d\theta) = nd\theta, B^* = f_Y^* : \mathcal{K} \to \mathcal{K}, f_Y^*(1) = 1.$$

Hence, k_0 defined in Theorem 2.4 is n-1. We note that

(3.29)
$$\begin{aligned} H^{0}(\mathbb{D}^{2}) &= \mathbb{R}, H^{1}(\mathbb{D}^{2}) = H^{2}(\mathbb{D}^{2}) = 0, \\ H^{0}(\mathbb{D}^{2}, S^{1}) &= H^{1}(\mathbb{D}^{2}, S^{1}) = 0, H^{2}(\mathbb{D}^{2}, S^{1}) = \mathbb{R}, \\ f^{*} : H^{0}(\mathbb{D}^{2}) \to H^{0}(\mathbb{D}^{2}), f^{*}(1) = 1, \\ f^{*} : H^{2}(\mathbb{D}^{2}, S^{1}) \to H^{0}(\mathbb{D}^{2}, S^{1}), f^{*}(1) = n. \end{aligned}$$

Finally, we obtain the following result.

$$\begin{split} \sum_{q=0}^2 (-1)^q \operatorname{Tr} \left(f^* : H^q(\mathbb{D}^2) \to H^q(\mathbb{D}^2) \right) \\ &= \sum_{x \in \mathcal{F}_0(f)} \operatorname{sign} \det(\operatorname{Id} - df(x)) = 1, \\ \sum_{q=0}^2 (-1)^q \operatorname{Tr} \left(f^* : H^q(\mathbb{D}^2, S^1) \to H^q(\mathbb{D}^2, S^1) \right) \\ &= \sum_{x \in \mathcal{F}_0 \cup \mathcal{F}_Y^-(f)} \operatorname{sign} \det(\operatorname{Id} - df(x)) = n, \end{split}$$

which shows (1.5). We also note that

$$\begin{split} \sum_{q=\text{even}}^{2} (-1)^{q} \operatorname{Tr} \left(f^{*} : H^{q}(\mathbb{D}^{2}, S^{1}) \to H^{q}(\mathbb{D}^{2}, S^{1}) \right) \\ &- \sum_{q=\text{odd}}^{2} (-1)^{q} \operatorname{Tr} \left(f^{*} : H^{q}(\mathbb{D}^{2}) \to H^{q}(\mathbb{D}^{2}) \right) \\ &= \sum_{x \in \mathcal{F}_{0}(f)} \operatorname{sign} \det(\operatorname{Id} - df(x)) - \frac{1}{2} \sum_{x \in \mathcal{F}_{0}(f_{Y})} \operatorname{sign} \det(\operatorname{Id} - df(x)) + \frac{1}{2} k_{0} \\ &= n, \\ \sum_{q=\text{odd}}^{2} (-1)^{q} \operatorname{Tr} \left(f^{*} : H^{q}(\mathbb{D}^{2}) \to H^{q}(\mathbb{D}^{2}) \right) \\ &- \sum_{q=\text{odd}}^{2} (-1)^{q} \operatorname{Tr} \left(f^{*} : H^{q}(\mathbb{D}^{2}, S^{1}) \to H^{q}(\mathbb{D}^{2}, S^{1}) \right) \\ &= \sum_{x \in \mathcal{F}_{0}(f)} \operatorname{sign} \det(\operatorname{Id} - df(x)) - \frac{1}{2} \sum_{x \in \mathcal{F}_{0}(f_{Y})} \operatorname{sign} \det(\operatorname{Id} - df(x)) - \frac{1}{2} k_{0} \\ &= 1, \end{split}$$

which shows Theorem 2.4.

References

- M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. I, Ann. Math., 86 (1967), 374-407.
- F. Bei, The L²-Atiyah-Bott-Lefschetz theorem on manifolds with conical singularities: a heat kernel approach, Ann. Glob. Anal. Geom., 44 (2013), 565-605.
- [3] V. A. Brenner and M. A. Shubin, Atiyah-Bott-Lefschetz formula for elliptic complexes on manifolds with boundary, J. Soviet Math., 64 (1993), 1069-1111.
- [4] P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, 2nd Edition, CRC Press, Inc., 1994.
- [5] R.-T. Huang and Y. Lee, The refined analytic torsion and a well-posed boundary condition for the odd signature operator, J. Geom. Phys., 126 (2018), 68-92.
- [6] R.-T. Huang and Y. Lee, Lefschetz fixed point formula on a compact Riemannian manifold with boundary for some boundary conditions, Geom. Dedicata., 181 (2016), 43-59.
- [7] P. Kirk and M. Lesch, The η-invariant, Maslov index and spectral flow for Dirac-type operators on manifolds with boundary, Forum Math., 16 (2004), no.4, 553-629.
- [8] J. Roe, Elliptic operators, topology and asymptotic methods (2nd Ed.), Research Notes in Mathematics series 395, Chapman and Hall/CRC, 1998.

Yoonweon Lee Department of Mathematics Education Inha University Incheon, 22212, Republic of Korea *E-mail*: yoonweon@inha.ac.kr