TWO EXAMPLES OF LEFSCHETZ FIXED POINT FORMULA WITH RESPECT TO SOME BOUNDARY CONDITIONS

Yoonweon Lee*

Abstract

The boundary conditions $\widetilde{\mathcal{P}}_{0}$ and $\widetilde{\mathcal{P}}_{1}$ were introduced in [5] by using the Hodge decomposition on the de Rham complex. In [6] the Atiyah-Bott-Lefschetz type fixed point formulas were proved on a compact Riemannian manifold with boundary for some special type of smooth functions by using these two boundary conditions. In this paper we slightly extend the result of [6] and give two examples showing these fixed point theorems.

1. Introduction

In this paper we are going to discuss the Atiyah-Bott-Lefschetz type fixed point formula on a compact Riemannian manifold with boundary with respective to some boundary conditions $\widetilde{\mathcal{P}}_{0}$ and $\widetilde{\mathcal{P}}_{1}$. In [5] R.-T. Huang and the author introduced new boundary conditions $\widetilde{\mathcal{P}}_{0}$ and $\widetilde{\mathcal{P}}_{1}$ for the odd signature operator acting on the space of smooth differential forms on a compact Riemannian manifold with boundary and in [6] they proved the Atiyah-Bott-Lefschetz type fixed point formulas for a special type of smooth functions with respect to the boundary conditions $\widetilde{\mathcal{P}}_{0}$ and $\widetilde{\mathcal{P}}_{1}$. In this paper we slightly extend the result of $[6]$ and give two examples showing the results obtained in [6]. Hence, this paper is a continuation of [6]. For a self-contained presentation, some material in [6] will be repeated for a background explanation.

We begin with the Atiyah-Bott-Lefschetz fixed point formula on a compact closed Riemannian manifold given in [1] and its generalization to a compact Riemann manifold with boundary given in [3]. Let (M, g^{M})

[^0]be an m-dimensional compact closed Riemannian manifold and $f: M \rightarrow$ M be a smooth map. A point $x_{0} \in M$ is called a simple fixed point of f if
\[

$$
\begin{equation*}
f\left(x_{0}\right)=x_{0}, \quad \operatorname{det}\left(\operatorname{Id}-d f\left(x_{0}\right)\right) \neq 0 \tag{1.1}
\end{equation*}
$$

\]

If x_{0} is a simple fixed point, then the graph of f is transverse to $M \times M$ at $\left(x_{0}, x_{0}\right)$, which shows that simple fixed points are discrete. We define the Lefschetz number $L(f)$ by

$$
\begin{equation*}
L(f)=\sum_{q=0}^{m}(-1)^{q} \operatorname{Tr}\left(f^{*}: H^{q}(M) \rightarrow H^{q}(M)\right) \tag{1.2}
\end{equation*}
$$

where $H^{q}(M)$ is computed with the coefficient \mathbb{R}. All through this paper the cohomology groups including $H^{q}(M), H^{q}(Y)$ and $H^{q}(M, Y)$ are computed with respect to \mathbb{R} so that we ignore the torsion parts. It is shown in [1] (see also [8]) that if f has only simple fixed points, then

$$
\begin{equation*}
L(f)=\sum_{f(x)=x} \operatorname{sign} \operatorname{det}(\operatorname{Id}-d f(x)) \tag{1.3}
\end{equation*}
$$

Let $\left(M, Y, g^{M}\right)$ be a compact Riemannian manifold with boundary Y and $f: M \rightarrow M$ be a smooth map with $f(Y) \subset Y$. We assume that all fixed points of f are simple. On the boundary Y, we need one more ingredient. Let $f\left(x_{0}\right)=x_{0}$ with $x_{0} \in Y$. Considering two maps $d f\left(x_{0}\right): T_{x_{0}} M \rightarrow T_{x_{0}} M$ and $d\left(\left.f\right|_{Y}\right)\left(x_{0}\right): T_{x_{0}} Y \rightarrow T_{x_{0}} Y$, there is a map

$$
\begin{equation*}
a_{x_{0}}:=d f\left(x_{0}\right)\left(\bmod T_{x_{0}} Y\right): T_{x_{0}} M / T_{x_{0}} Y \rightarrow T_{x_{0}} M / T_{x_{0}} Y \tag{1.4}
\end{equation*}
$$

Since $T_{x_{0}} M / T_{x_{0}} Y$ is isomorphic to \mathbb{R}, if follows that $a_{x_{0}}$ is a 1×1 matrix, which is a real number. Considering the map $f: M \rightarrow M$ with $f(Y) \subset Y, a_{x_{0}}$ is a linear map from $[0, \infty)$ to $[0, \infty)$ and hence $a_{x_{0}}$ is identified with a non-negative real number. Since x_{0} is a simple fixed point, it follows that $a_{x_{0}} \neq 1$. A simple boundary fixed point x_{0} is called attracting and repelling if $0 \leq a_{x_{0}}<1$ and $a_{x_{0}}>1$, respectively. We denote by $\mathcal{F}_{0}(f), \mathcal{F}_{Y}^{+}(f)$ and $\mathcal{F}_{Y}^{-}(f)$ the set of all interior fixed points, attracting and repelling boundary fixed points of f, respectively. We
denote $\mathcal{F}_{Y}(f)=\mathcal{F}_{Y}^{+}(f) \cup \mathcal{F}_{Y}^{-}(f)$. It is shown in [3] that

$$
\begin{align*}
& \sum_{q=0}^{m}(-1)^{q} \operatorname{Tr}\left(f^{*}: H^{q}(M) \rightarrow H^{q}(M)\right) \tag{1.5}\\
&=\sum_{x \in \mathcal{F}_{0} \cup \mathcal{F}_{Y}^{+}(f)} \operatorname{sign} \operatorname{det} \operatorname{det}(\operatorname{Id}-d f(x)) \\
& \sum_{q=0}^{m}(-1)^{q} \operatorname{Tr}\left(f^{*}: H^{q}(M, Y) \rightarrow H^{q}(M, Y)\right) \\
&=\sum_{x \in \mathcal{F}_{0} \cup \mathcal{F}_{Y}^{-}(f)} \operatorname{sign} \operatorname{det} \operatorname{det}(\operatorname{Id}-d f(x))
\end{align*}
$$

As a reference, the Lefschetz fixed formula on a compact manifold with conical singularities was discussed in [2], which is irrelevant to this note.

On the other hand, new boundary conditions $\widetilde{\mathcal{P}}_{0}$ and $\widetilde{\mathcal{P}}_{1}$ were introduced in [5] and similar fixed point formulas were proved in [6] for a special type of smooth functions with respect to the boundary conditions \mathcal{P}_{0} and \mathcal{P}_{1}. In the next section, we are going to review the boundary conditions $\widetilde{\mathcal{P}}_{0}, \widetilde{\mathcal{P}}_{1}$ and results obtained in [6]. In Section 3, we are going to give two examples showing these results.

2. The boundary conditions $\widetilde{\mathcal{P}}_{0}, \widetilde{\mathcal{P}}_{1}$ and de Rham complex $\left(\Omega_{\widetilde{\mathcal{P}}_{0} / \widetilde{\mathcal{P}}_{1}}^{\bullet}(M), d\right)$

The material in this section is not new and most parts are found in Section 2 of [6]. However, for a self-contained presentation, we are going to review some material of Section 2 in [6]. Furthermore, we are going to complete the proofs of some results which were skipped in Section 2 of [6], and extend the results slightly, which justifies this section.

Let $\left(M, Y, g^{M}\right)$ be an m-dimensional compact oriented Riemannian manifold with boundary Y. We choose a collar neighborhood U of Y which is diffeomorphic to $[0, \epsilon) \times Y$. We denote by (u, y) the coordinate of $[0, \epsilon) \times Y$ and by $d u, \frac{\partial}{\partial u}$ the one form and vector field which is normal to Y on U. We assume that the metric g^{M} on U is the product one so that

$$
\begin{equation*}
\left.g^{M}\right|_{U}=d u^{2}+g^{Y} \tag{2.1}
\end{equation*}
$$

where g^{Y} is a Riemannian metric on $\{0\} \times Y$. We denote by d_{q}^{Y} : $\Omega^{q}(Y) \rightarrow \Omega^{q+1}(Y)$ the exterior derivative acting on smooth q-forms on
Y and \star_{Y} be the Hodge star operator on Y which is induced from the Hodge star operator \star_{M} on M by $d \operatorname{vol}(M)=d u \wedge d \operatorname{vol}(Y)$. Then, the formal adjoint $\left(d_{q}^{Y}\right)^{*}: \Omega^{q+1}(Y) \rightarrow \Omega^{q}(Y)$ is defined by $\left(d_{q}^{Y}\right)^{*}=$ $(-1)^{m q+q+1} \star_{Y} d_{q}^{Y} \star_{Y}$ and the Laplacian $\Delta_{Y}^{q}: \Omega^{q}(Y) \rightarrow \Omega^{q}(Y)$ is defined by $\Delta_{Y}^{q}=\left(d_{q}^{Y}\right)^{*} d_{q}^{Y}+d_{q-1}^{Y}\left(d_{q-1}^{Y}\right)^{*}$. It follows from the Hodge decomposition theorem that

$$
\begin{equation*}
\Omega^{q}(Y)=\operatorname{Im} d_{q-1}^{Y} \oplus \mathcal{H}^{q}(Y) \oplus \operatorname{Im}\left(d_{q}^{Y}\right)^{*} \tag{2.2}
\end{equation*}
$$

where
(2.3) $\mathcal{H}^{q}(Y)=\operatorname{ker} \Delta_{Y}^{q}=\left\{\omega_{Y} \in \Omega^{q}(Y) \mid d_{q}^{Y} \omega_{Y}=\left(d_{q-1}^{Y}\right)^{*} \omega_{Y}=0\right\}$.

Suppose that a q-form $\phi \in \Omega^{q}(M)$ satisfies $d_{q} \phi=d_{q-1}^{*} \phi=0$, where $d_{q}: \Omega^{q}(M) \rightarrow \Omega^{q+1}(M)$ is the exterior derivative on M and $d_{q-1}^{*}=$ $(-1)^{m q+m+1} \star_{M} d_{m-q} \star_{M}$ is the formal adjoint of d_{q-1}. Simple computation shows that ϕ restricted to $\{0\} \times Y$ is expressed by

$$
\begin{gather*}
\left.\phi\right|_{Y}=\left(d_{q-1}^{Y} \varphi_{1}+\varphi_{2}\right)+d u \wedge\left(\left(d_{q}^{Y}\right)^{*} \psi_{1}+\psi_{2}\right), \tag{2.4}\\
\varphi_{1}, \psi_{1} \in \Omega^{\bullet}(Y), \quad \varphi_{2}, \psi_{2} \in \mathcal{H}^{\bullet}(Y)
\end{gather*}
$$

In other words, φ_{2} and $\star_{Y} \psi_{2}$ are the harmonic parts of $\iota^{*} \phi$ and $\iota^{*}\left(\star_{M} \phi\right)$, where $\iota: Y \rightarrow M$ is the natural inclusion. We define

$$
\begin{equation*}
\mathcal{K}^{q}=\left\{\varphi_{2} \in \mathcal{H}^{q}(Y) \mid d_{q} \phi=\left(d_{q-1}\right)^{*} \phi=0\right\}, \quad \mathcal{K}=\oplus_{q=0}^{m-1} \mathcal{K}^{q} \tag{2.5}
\end{equation*}
$$

Replacing ϕ with $\star_{M} \phi$ yields $\star_{Y} \psi_{2} \in \mathcal{K}^{m-q}$, which leads to the following result.

$$
\begin{align*}
\star_{Y} \mathcal{K}^{m-q} & =\left\{\psi_{2} \in \mathcal{H}^{q}(Y) \mid d_{q} \phi=\left(d_{q-1}\right)^{*} \phi=0\right\}, \tag{2.6}\\
\star_{Y} \mathcal{K} & =\oplus_{q=0}^{m-1} \star_{Y} \mathcal{K}^{q} .
\end{align*}
$$

In the next two lemmas, we are going to show that \mathcal{K} is exactly the half of $\mathcal{H}^{\bullet}(Y)$ and $\mathcal{K} \oplus \star_{Y} \mathcal{K}=\mathcal{H}^{\bullet}(Y)$ (cf. Corollary 8.4 in [7]).

Lemma 2.1.

$$
\operatorname{dim} \mathcal{K}=\frac{1}{2} \operatorname{dim} \mathcal{H}^{\bullet}(Y)
$$

Proof. We note the following long exact sequence.

$$
\begin{equation*}
\longrightarrow H^{q}(M, Y) \xrightarrow{\alpha_{q}} H^{q}(M) \xrightarrow{\iota_{q}^{*}} H^{q}(Y) \xrightarrow{\beta_{q}} H^{q+1}(M, Y) \longrightarrow \tag{2.7}
\end{equation*}
$$

Since \mathcal{K} is a harmonic part of $\iota^{*} \phi$ for $\phi \in \Omega^{\bullet}(M)$, it follows that $\operatorname{dim} \mathcal{K}=$ $\sum_{q=0}^{m-1} \operatorname{dim} \operatorname{Im} \iota_{q}^{*}$. We denote

$$
\begin{equation*}
H_{+}^{q}(M, Y):=H^{q}(M, Y) \ominus H_{-}^{q}(M, Y), \quad H_{-}^{q+1}(M, Y):=\operatorname{Im} \beta_{q} \tag{2.8}
\end{equation*}
$$

so that $H^{q}(M, Y)=H_{+}^{q}(M, Y) \oplus H_{-}^{q}(M, Y)$. It follows that

$$
\begin{align*}
\operatorname{dim} H^{q}(M) & =\operatorname{dim} H_{+}^{q}(M, Y)+\operatorname{dim} \operatorname{Im} \iota_{q}^{*} \tag{2.9}\\
\operatorname{dim} H^{q}(Y) & =\operatorname{dim} H_{-}^{q+1}(M, Y)+\operatorname{dim} \operatorname{Im} \iota_{q}^{*}
\end{align*}
$$

which leads to

$$
\begin{align*}
& \sum_{q=0}^{m-1} \operatorname{dim} H^{q}(Y)=\sum_{q=0}^{m-1}\left(\operatorname{dim} H_{-}^{q+1}(M, Y)+\operatorname{dim} \operatorname{Im} \iota_{q}^{*}\right) \tag{2.10}\\
& =\sum_{q=0}^{m-1}\left(\operatorname{dim} H^{q+1}(M, Y)-\operatorname{dim} H_{+}^{q+1}(M, Y)+\operatorname{dim} \operatorname{Im} \iota_{q}^{*}\right) \\
& =\sum_{q=0}^{m-1}\left(\operatorname{dim} H^{q+1}(M, Y)-\operatorname{dim} H^{q+1}(M)+\operatorname{Im} \iota_{q+1}^{*}+\operatorname{dim} \operatorname{Im} \iota_{q}^{*}\right) \\
& =\sum_{q=1}^{m} \operatorname{dim} H^{q}(M, Y)-\sum_{q=1}^{m} \operatorname{dim} H^{q}(M) \\
& \quad+\sum_{q=1}^{m} \operatorname{dim} \operatorname{Im} \iota_{q}^{*}+\sum_{q=0}^{m-1} \operatorname{dim} \operatorname{Im} \iota_{q}^{*} .
\end{align*}
$$

Since $H^{0}(M, Y)=0$ and $H^{0}(M)=\mathbb{R}$, it follows from the LefschetzPoincaré duality that

$$
\begin{equation*}
\sum_{q=1}^{m} \operatorname{dim} H^{q}(M, Y)-\sum_{q=1}^{m} \operatorname{dim} H^{q}(M)=1 \tag{2.11}
\end{equation*}
$$

Since $\iota_{0}^{*}: H^{0}(M) \rightarrow H^{0}(Y)$ is an isomorphism, it follows that $\operatorname{dim} \operatorname{Im} \iota_{0}^{*}=$ 1 , which leads to

$$
\begin{align*}
\sum_{q=0}^{m-1} \operatorname{dim} H^{q}(Y) & =1+\sum_{q=1}^{m} \operatorname{dim} \operatorname{Im} \iota_{q}^{*}+\sum_{q=0}^{m-1} \operatorname{dim} \operatorname{Im} \iota_{q}^{*} \tag{2.12}\\
& =2 \sum_{q=0}^{m-1} \operatorname{dim} \operatorname{Im} \iota_{q}^{*} .
\end{align*}
$$

This completes the proof of the lemma.
Lemma 2.2. \mathcal{K} is orthogonal to $\star_{Y} \mathcal{K}$, and hence $\mathcal{K} \oplus \star_{Y} \mathcal{K}=\mathcal{H}^{\bullet}(Y)$.

Proof. For any $\phi \in \Omega^{q}(M)$ and $\omega \in \Omega^{q+1}(M)$ satisfying $d_{q} \phi=$ $d_{q-1}^{*} \phi=0$ and $d_{q+1} \omega=d_{q}^{*} \omega=0$, it follows that

$$
\begin{align*}
&\left.\phi\right|_{Y}=\left(d_{q-1}^{Y} \varphi_{1}+\varphi_{2}\right)+d u \wedge\left(\left(d_{q}^{Y}\right)^{*} \psi_{1}+\psi_{2}\right) \tag{2.13}\\
& \varphi_{1}, \psi_{1} \in \Omega^{\bullet}(Y), \quad \varphi_{2}, \psi_{2} \in \mathcal{H}^{\bullet}(Y) \\
&\left.\omega\right|_{Y}=\left(d_{q-1}^{Y} \omega_{1}+\omega_{2}\right)+d u \wedge\left(\left(d_{q}^{Y}\right)^{*} \eta_{1}+\eta_{2}\right), \\
& \omega_{1}, \eta_{1} \in \Omega^{\bullet}(Y), \quad \omega_{2}, \eta_{2} \in \mathcal{H}^{\bullet}(Y) .
\end{align*}
$$

Then, $\varphi_{2}, \omega_{2} \in \mathcal{K}$ and $\psi_{2}, \eta_{2} \in \star_{Y} \mathcal{K}$. In fact, $\varphi_{2} \in \mathcal{K}^{q}$ and $\eta_{2} \in$ $\star_{Y} \mathcal{K}^{m-1-q}$. It is enough to show that

$$
\begin{equation*}
\left\langle\varphi_{2}, \eta_{2}\right\rangle_{Y}:=\int_{Y} \varphi_{2} \wedge \star_{Y} \eta_{2}=0 \tag{2.14}
\end{equation*}
$$

Since $d_{m-q-1}\left(\star_{M} \omega\right)=0$, it follows by Stokes' theorem that

$$
\begin{align*}
0 & =\int_{M} d_{q} \phi \wedge \star_{M} \omega=\int_{M} d_{m-1}\left(\phi \wedge \star_{M} \omega\right)=\int_{Y} \iota^{*} \phi \wedge \iota^{*}\left(\star_{M} \omega\right) \tag{2.15}\\
& =\int_{Y}\left(d_{q-1}^{Y} \varphi_{1}+\varphi_{2}\right) \wedge \star_{Y}\left(\left(d_{q}^{Y}\right)^{*} \eta_{1}+\eta_{2}\right)=\int_{Y} \varphi_{2} \wedge \star_{Y} \eta_{2}
\end{align*}
$$

which completes the proof of the lemma.
Near the boundary Y, a q-form $\omega \in \Omega^{q}(M)$ can be expressed by $\omega=\omega_{1}+d u \wedge \omega_{2}$, where $\iota \frac{\partial}{\partial u} \omega_{1}=\iota \frac{\partial}{\partial u} \omega_{2}=0$. We denote ω by

$$
\begin{equation*}
\omega=\omega_{1}+d u \wedge \omega_{2}=\left(\omega_{1}, \omega_{2}\right) \tag{2.16}
\end{equation*}
$$

We denote $\mathcal{L}_{0}=(\mathcal{K}, \mathcal{K})$ and $\mathcal{L}_{1}=\left(\star_{Y} \mathcal{K}, \star_{Y} \mathcal{K}\right)$ and define the orthogonal projections

$$
\begin{align*}
\mathcal{P}_{-, \mathcal{L}_{0}}, \mathcal{P}_{+, \mathcal{L}_{1}} & : \Omega^{\bullet}(Y) \oplus \Omega^{\bullet}(Y) \rightarrow \Omega^{\bullet}(Y) \oplus \Omega^{\bullet}(Y) \tag{2.17}\\
\operatorname{Im} \mathcal{P}_{-, \mathcal{L}_{0}} & =\left(\operatorname{Im} d^{Y} \oplus \mathcal{K}, \operatorname{Im} d^{Y} \oplus \mathcal{K}\right) \\
\operatorname{Im} \mathcal{P}_{+, \mathcal{L}_{1}} & =\left(\operatorname{Im}\left(d^{Y}\right)^{*} \oplus \star_{Y} \mathcal{K}, \operatorname{Im}\left(d^{Y}\right)^{*} \oplus \star_{Y} \mathcal{K}\right) .
\end{align*}
$$

It is straightforward that
(2.18) $\Omega^{\bullet}(Y) \oplus \Omega^{\bullet}(Y)=\operatorname{Im} \mathcal{P}_{-, \mathcal{L}_{0}} \oplus \operatorname{Im} \mathcal{P}_{+, \mathcal{L}_{1}}, \star_{Y} \operatorname{Im} \mathcal{P}_{-, \mathcal{L}_{0}}=\operatorname{Im} \mathcal{P}_{+, \mathcal{L}_{1}}$,
which shows that $\Omega^{\bullet}(Y) \oplus \Omega^{\bullet}(Y)$ is a symplectic vector space with Lagrangian subspaces $\operatorname{Im} \mathcal{P}_{-, \mathcal{L}_{0}}$ and $\operatorname{Im} \mathcal{P}_{+, \mathcal{L}_{1}}$. We define an involution $\Gamma: \Omega^{q}(M) \rightarrow \Omega^{q}(M)$ by

$$
\begin{equation*}
\Gamma \omega:=i^{\left[\frac{m+1}{2}\right]}(-1)^{\frac{q(q+1)}{2}} \star_{M} \omega . \tag{2.19}
\end{equation*}
$$

Then, Γ satisfies $\Gamma^{2}=\mathrm{Id}$. We define the odd signature operator by

$$
\begin{equation*}
\mathcal{D}_{M}: \Omega^{\bullet}(M) \rightarrow \Omega^{\bullet}(M), \quad \mathcal{D}_{M}=d \Gamma+\Gamma d . \tag{2.20}
\end{equation*}
$$

It is straightforward that

$$
\begin{equation*}
\mathcal{D}_{M}^{2}=\Delta_{M}^{q}=d_{q}^{*} d_{q}+d_{q-1} d_{q-1}^{*} . \tag{2.21}
\end{equation*}
$$

It is shown in Lemma 2.15 of [5] that $\mathcal{P}_{-, \mathcal{L}_{0}}$ and $\mathcal{P}_{+, \mathcal{L}_{1}}$ are well posed boundary conditions for the odd signature operator \mathcal{D}_{M}. Then, \mathcal{D}_{M} with the boundary condition $\mathcal{P}_{-, \mathcal{L}_{0}}$ or $\mathcal{P}_{+, \mathcal{L}_{1}}$ has a discrete spectrum. In particular, Δ_{M}^{q} with the boundary condition $\mathcal{P}_{-, \mathcal{L}_{0}}$ or $\mathcal{P}_{+, \mathcal{L}_{1}}$ has a discrete spectrum. We define

$$
\begin{align*}
& \Omega_{\mathcal{P}_{-, \mathcal{L}_{0}}^{q, ~}}^{q}(M)=\left\{\phi \in \Omega^{q}(M) \mid \mathcal{P}_{-, \mathcal{L}_{0}}\left(\left.\left(\mathcal{D}_{M}^{\ell} \phi\right)\right|_{Y}\right)=0, \ell=0,1,2, \cdots\right\}, \tag{2.22}\\
& \Omega_{\mathcal{P}_{+, \mathcal{L}_{1}}, \ldots}^{q, \infty}(M)=\left\{\phi \in \Omega^{q}(M) \mid \mathcal{P}_{+, \mathcal{L}_{1}}\left(\left.\left(\mathcal{D}_{M}^{\ell} \phi\right)\right|_{Y}\right)=0, \ell=0,1,2, \cdots\right\} .
\end{align*}
$$

For example, an eigenform ω of Δ_{M}^{q} satisfying $\mathcal{P}_{-, \mathcal{L}_{0}}(\omega)=\mathcal{P}_{-, \mathcal{L}_{0}}\left(\mathcal{D}_{M} \omega\right)=$ $0\left(\mathcal{P}_{+, \mathcal{L}_{1}}(\omega)=\mathcal{P}_{+, \mathcal{L}_{1}}\left(\mathcal{D}_{M} \omega\right)=0\right)$ belongs to $\Omega_{\mathcal{P}_{-, \mathcal{L}_{0}}^{q, ~}}^{\dot{\mathcal{A}}(}(M)\left(\Omega_{\mathcal{P}_{+, \mathcal{L}_{1}}}^{q_{0}, \infty}(M)\right)$. Simple computation shows that for each q the exterior derivative d maps $\Omega_{\mathcal{P}_{-, \mathcal{L}_{0}}}^{q, \infty}(M)$ and $\Omega_{\mathcal{P}_{+, \mathcal{L}_{1}}}^{q, \infty}(M)$ into $\Omega_{\mathcal{P}_{+, \mathcal{L}_{1}}}^{q, \infty}(M) \Omega_{\mathcal{P}_{-, \mathcal{L}_{0}}}^{q, \infty}(M)$, respectively, i.e.

$$
d: \Omega_{\mathcal{P}_{-}, \mathcal{L}_{0}}^{q, \infty}(M) \rightarrow \Omega_{\mathcal{P}_{+, \mathcal{L}_{1}}}^{q, \infty}(M), \quad d: \Omega_{\mathcal{P}_{+, \mathcal{L}_{1}}^{q}}^{q, \infty}(M) \rightarrow \Omega_{\mathcal{P}_{-, \mathcal{L}_{0}}}^{q, \infty}(M) .
$$

Keeping these facts in mind, we define two de Rham comlexes as follows.

$$
\begin{align*}
&\left(\Omega_{\mathcal{P}_{0}}^{\bullet \infty}(M), d\right): 0 \longrightarrow \Omega_{\mathcal{P}_{-, \mathcal{L}_{0}}^{0, \infty}}^{0, \infty}(M) \xrightarrow{d} \Omega_{\mathcal{P}_{+, \mathcal{L}_{1}}}^{1, \infty}(M) \tag{2.23}\\
& \quad \xrightarrow{d} \Omega_{\mathcal{P}_{-, \mathcal{L}_{0}}}^{2, \infty}(M) \xrightarrow{d} \cdots \longrightarrow 0 . \\
&\left(\Omega_{\mathcal{P}_{1}}^{\bullet \infty}(M), d\right): 0 \longrightarrow \Omega_{\mathcal{P}_{+, \mathcal{L}_{1}}^{0, \infty}}^{0, \infty}(M) \xrightarrow{d} \Omega_{\mathcal{P}_{-, \mathcal{L}_{0}}^{1, \infty}}^{1, \infty}(M) \\
& \quad \xrightarrow{d} \Omega_{\mathcal{P}_{+, \mathcal{L}_{1}}^{2, \infty}}^{2, \infty}(M) \xrightarrow{d} \cdots \longrightarrow 0 .
\end{align*}
$$

We define two Hodge Laplacians $\Delta_{M, \widetilde{\mathcal{P}}_{0}}^{q}$ and $\Delta_{M, \widetilde{\mathcal{P}}_{1}}^{q}$ with respect to $\widetilde{\mathcal{P}}_{0}$ and $\widetilde{\mathcal{P}}_{1}$ by

$$
\begin{align*}
& \Delta_{M, \widetilde{\mathcal{P}}_{0}}^{q}:= d_{q}^{*} d_{q}+d_{q-1} d_{q-1}^{*}, \tag{2.24}\\
& \operatorname{Dom}\left(\Delta_{\widetilde{\mathcal{P}}_{0}}^{q}\right)=\Omega_{\widetilde{\mathcal{P}}_{0}}^{q, \infty}(M):= \begin{cases}\Omega_{\mathcal{P}_{-, \mathcal{L}_{0}}}^{q, \infty}(M) & \text { for } q \text { even } \\
\Omega_{\mathcal{P}_{+, \mathcal{L}_{1}}}^{, q,}(M) & \text { for } q \text { odd. }\end{cases} \\
& \Delta_{M, \widetilde{\mathcal{P}}_{1}:=}^{q} d_{q}^{*} d_{q}+d_{q-1} d_{q-1}^{*}, \\
& \operatorname{Dom}\left(\Delta_{\widetilde{\mathcal{P}}_{1}}^{q}\right)=\Omega_{\widetilde{\mathcal{P}}_{1}}^{q, \infty}(M):= \begin{cases}\Omega_{\mathcal{P}_{+, \mathcal{L}_{1}}}^{q, \infty}(M) & \text { for } q \text { even } \\
\Omega_{\mathcal{P}_{-, \mathcal{L}_{0}}}^{q, \infty}(M) & \text { for } q \text { odd. } .\end{cases}
\end{align*}
$$

The following lemma is straightforward (see Lemma 2.4 in [6]).

Lemma 2.3. The cohomologies of the complex $\left(\Omega_{\widetilde{\mathcal{P}}_{0} / \widetilde{\mathcal{P}}_{1}}^{\bullet \infty}(M), d\right)$ are given as follows.

$$
\begin{aligned}
& H^{q}\left(\left(\Omega_{\widetilde{\mathcal{P}}_{0}^{\bullet}}^{\bullet \infty}(M), d\right)\right)=\operatorname{ker} \Delta_{\widetilde{\mathcal{P}}_{0}}^{q}= \begin{cases}H^{q}(M, Y) & \text { if } q \text { is even } \\
H^{q}(M) & \text { if } q \text { is odd }\end{cases} \\
& H^{q}\left(\left(\Omega_{\widetilde{\mathcal{P}}_{1}}^{\bullet \infty}(M), d\right)\right)=\operatorname{ker} \Delta_{\widetilde{\mathcal{P}}_{1}}^{q}= \begin{cases}H^{q}(M) & \text { if } q \text { is even } \\
H^{q}(M, Y) & \text { if } q \text { is odd }\end{cases}
\end{aligned}
$$

By analyzing the heat traces $\sum_{q=0}^{m}(-1)^{q} \operatorname{Tr}\left(f^{*} e^{-t \Delta_{M, \widetilde{\mathcal{P}}_{0}}^{q}}\right)$ and $\sum_{q=0}^{m}(-1)^{q} \operatorname{Tr}\left(f^{*} e^{-t \Delta_{M, \tilde{\mathcal{P}}_{1}}^{q}}\right)$, the following is obtained, which is the main result of [6].

Theorem 2.4. Let $\left(M, Y, g^{M}\right)$ and $f: M \rightarrow M$ be as above. On a collar neighborhood U of Y and for $0 \leq c \in \mathbb{R}, c \neq 1$, we assume that $f(u, y)=\left(c u+u^{2} \kappa(u), B(y)\right)$ for some smooth function $\kappa:[0, \epsilon) \rightarrow$ $[0, \epsilon)$, and $B(y)^{*}: \Omega^{\bullet}(Y) \rightarrow \Omega^{\bullet}(Y)$ maps $\operatorname{Im} \mathcal{P}_{-, \mathcal{L}_{0}}$ and $\operatorname{Im} \mathcal{P}_{+, \mathcal{L}_{1}}$ into $\operatorname{Im} \mathcal{P}_{-, \mathcal{L}_{0}}$ and $\operatorname{Im} \mathcal{P}_{+, \mathcal{L}_{1}}$, respectively. Then,
(1) $\sum_{q=\text { even }} \operatorname{Tr}\left(f^{*}: H^{q}(M, Y) \rightarrow H^{q}(M, Y)\right)$

$$
\begin{aligned}
& \quad-\sum_{q=\mathrm{odd}} \operatorname{Tr}\left(f^{*}: H^{q}(M) \rightarrow H^{q}(M)\right) \\
& =\sum_{x \in \mathcal{F}_{0}(f)} \operatorname{sign} \operatorname{det}(I-d f(x)) \\
& \quad+\frac{1}{2} \operatorname{sign}(1-c) \sum_{y \in \mathcal{F}_{Y}(f)} \operatorname{sign} \operatorname{det}\left(I-d f_{Y}(y)\right)+\frac{1}{2} k_{0},
\end{aligned}
$$

(2) $\sum_{q=\text { even }} \operatorname{Tr}\left(f^{*}: H^{q}(M) \rightarrow H^{q}(M)\right)$

$$
\begin{aligned}
& \quad-\sum_{q=\mathrm{odd}} \operatorname{Tr}\left(f^{*}: H^{q}(M, Y) \rightarrow H^{q}(M, Y)\right) \\
& =\sum_{x \in \mathcal{F}_{0}(f)} \operatorname{sign} \operatorname{det}(I-d f(x)) \\
& \quad+\frac{1}{2} \operatorname{sign}(1-c) \sum_{y \in \mathcal{F}_{Y}(f)} \operatorname{sign} \operatorname{det}\left(I-d f_{Y}(y)\right)-\frac{1}{2} k_{0},
\end{aligned}
$$

where $k_{0}=\operatorname{Tr}\left(B^{*}: \star_{Y} \mathcal{K} \rightarrow \star_{Y} \mathcal{K}\right)-\operatorname{Tr}\left(B^{*}: \mathcal{K} \rightarrow \mathcal{K}\right)$.
Remark: (1) Theorem 2.4 was proved in [6] when $\kappa(u)=0, c>1$ and $B(y): Y \rightarrow Y$ is a local isometry. However, the theorem can be easily extended to this case.
(2) So far, we do not know how to extend Theorem 2.4 to a wider class of smooth functions.

3. Examples of Lefschetz fixed point formula on the complex $\left(\Omega_{\widetilde{\mathcal{P}}_{0} / \widetilde{\mathcal{P}}_{1}}^{\bullet \infty}(M), d\right)$

In this section, we are going to give two examples showing Theorem 2.4. The first one is the following. Let $S^{1}=\left\{e^{i \theta} \mid 0 \leq \theta \leq 2 \pi\right\}$ be the round circle and $h: S^{1} \rightarrow S^{1}$ be defined by $h\left(e^{i \theta}\right)=e^{k i \theta}$ for $2 \leq k \in \mathbb{N}$. Then, h has $k-1$ fixed points at $\left\{\left.e^{\frac{2 \pi \ell}{k-1} i} \right\rvert\, \ell=0,1, \cdots, k-2\right\}$. We note that for $y_{\ell}=e^{\frac{2 \pi \ell}{k-1} i}, d h\left(x_{\ell}\right): T_{y_{\ell}} S^{1} \rightarrow T_{y_{\ell}} S^{1}$ is given by $d h\left(y_{\ell}\right)(v)=k v$.

For $1 \leq n \in \mathbb{N}$, we denote by $T^{n}=S^{1} \times \cdots \times S^{1}$ the n-th product of S^{1} and give the usual flat product metric on T^{n}. For $\left(k_{1}, \cdots, k_{n}\right) \in \mathbb{N}^{n}$ with $k_{j} \geq 2$, we define

$$
\begin{equation*}
f: T^{n} \rightarrow T^{n}, \quad f\left(e^{i \theta_{1}}, \cdots, e^{i \theta_{n}}\right)=\left(e^{i k_{1} \theta_{1}}, \cdots, e^{i k_{n} \theta_{n}}\right) \tag{3.1}
\end{equation*}
$$

Then, f has $\left(k_{1}-1\right) \cdots\left(k_{n}-1\right)$ fixed points. At each fixed point $y \in T^{n}$, it follows that

$$
d f(y): T_{y} T^{n} \rightarrow T_{y} T^{n}, \quad d f(y)=\left(\begin{array}{cccc}
k_{1} & 0 & 0 & 0 \tag{3.2}\\
0 & k_{2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & k_{n}
\end{array}\right)
$$

which shows that

$$
\begin{equation*}
\operatorname{sign}(\operatorname{Id}-d f(y))=(-1)^{n} \tag{3.3}
\end{equation*}
$$

We denote $M=[0,1] \times T^{n}$ with the usual flat product metric. Then, the boundary is $Y=\{0\} \times T^{n} \cup\{1\} \times T^{n}$. We choose a smooth function $\rho:[0,1] \rightarrow[0,1]$ such that ρ has exactly 3 fixed points at $0, u_{0}, 1$ with $0<u_{0}<1$ and

$$
\begin{align*}
& \rho(0)=0, \quad \rho\left(u_{0}\right)=u_{0}, \quad \rho(1)=1 \tag{3.4}\\
& 0 \leq \rho^{\prime}(0)<1, \quad \rho^{\prime}\left(u_{0}\right)>1, \quad 0 \leq \rho^{\prime}(1)<1
\end{align*}
$$

We define

$$
\begin{equation*}
F:[0,1] \times T^{n} \rightarrow[0,1] \times T^{n}, \quad F(u, y)=(\rho(u), f(y)) \tag{3.5}
\end{equation*}
$$

Then, F has $3\left(k_{1}-1\right) \cdots\left(k_{n}-1\right)$ fixed points. There are $\left(k_{1}-1\right) \cdots\left(k_{n}-\right.$ 1) interior fixed points and $2\left(k_{1}-1\right) \cdots\left(k_{n}-1\right)$ attracting boundary fixed points. At the interior fixed points, it follows that

$$
\begin{align*}
\sum_{\left(u_{0}, y\right) \in \mathcal{F}_{0}(F)} \operatorname{sign}\left(\operatorname{Id}-d F\left(u_{0}, y\right)\right) & =-\sum_{y \in \mathcal{F}_{0}(f)} \operatorname{sign}(\operatorname{Id}-d f(y)) \tag{3.6}\\
& =(-1)^{n+1}\left(k_{1}-1\right) \cdots\left(k_{n}-1\right)
\end{align*}
$$

At the boundary fixed points, it follows that

$$
\begin{align*}
\sum_{(0, y),(1, y) \in \mathcal{F}_{Y}^{+}(F)} \operatorname{sign}\left(\operatorname{Id}-d F\left(u_{1}, y\right)\right) & =2 \sum_{y \in \mathcal{F}_{0}(f)} \operatorname{sign}(\operatorname{Id}-d f(y)) \tag{3.7}\\
& =(-1)^{n} 2\left(k_{1}-1\right) \cdots\left(k_{n}-1\right)
\end{align*}
$$

where $u_{1}=0$ or 1 . Hence, it follows that

$$
\begin{align*}
\sum_{(u, y) \in \mathcal{F}_{0}(F) \cup \mathcal{F}_{Y}^{+}(F)} \operatorname{sign}(\operatorname{Id}-d F(u, y)) & =(-1)^{n}\left(k_{1}-1\right) \cdots\left(k_{n}-1\right) \tag{3.8}\\
\sum_{(u, y) \in \mathcal{F}_{0}(F) \cup \mathcal{F}_{Y}^{-}(F)} \operatorname{sign}(\operatorname{Id}-d F(u, y)) & =-\sum_{y \in \mathcal{F}_{0}(f)} \operatorname{sign}(\operatorname{Id}-d f(y)) \\
& =(-1)^{n+1}\left(k_{1}-1\right) \cdots\left(k_{n}-1\right)
\end{align*}
$$

We are now going to compute $H^{q}(M)$ by using the de Rham complex. We consider the de Rham complex

$$
\begin{equation*}
\rightarrow \Omega^{q-1}(M) \xrightarrow{d_{q-1}} \Omega^{q}(M) \xrightarrow{d_{q}} \Omega^{q+1}(M) \rightarrow \tag{3.9}
\end{equation*}
$$

A q-form $\omega \in \Omega^{q}(M)$ can be expressed by $\omega=\omega_{1}+d u \wedge \omega_{2}$, where $\iota^{\partial u} \omega_{1}=\iota \frac{\partial}{\partial u} \omega_{2}=0$ with $\frac{\partial}{\partial u}$ the unit vector field normal to Y. Let $\iota: Y \rightarrow M$ be the natural inclusion. If $\left.\omega_{2}\right|_{Y}=\iota^{*} \omega_{2}=0$, then ω is said to satisfy the absolute boundary condition. If $\left.\omega_{1}\right|_{Y}=\iota^{*} \omega=0$, then ω is said to satisfy the relative boundary condition. Let $\Omega_{\text {nor }}^{q}(M)$ and $\Omega_{\text {tan }}^{q}(M)$ be the space of all smooth q-forms satisfying the absolute and relative boundary conditions, respectively. Then, it is well known (for example, Theorem 2.7.3 in [4]) that

$$
\begin{align*}
& H^{q}(M) \cong \mathcal{H}^{q}(M):=\left\{\omega \in \Omega_{\mathrm{nor}}^{q}(M) \mid d \omega=d^{*} \omega=0\right\} \tag{3.10}\\
& H^{q}(M, Y) \cong \mathcal{H}^{q}(M, Y):=\left\{\omega \in \Omega_{\mathrm{tan}}^{q}(M) \mid d \omega=d^{*} \omega=0\right\}
\end{align*}
$$

We denote

$$
\begin{equation*}
d \vartheta_{j}=(0,0, \cdots, d \theta, 0, \cdots, 0) \in \Omega^{1}(M) \tag{3.11}
\end{equation*}
$$

Then, $\left\{d \vartheta_{j_{1}} \wedge \cdots \wedge d \vartheta_{j_{q}} \mid 1 \leq j_{1}<\cdots<j_{q} \leq n\right\}$ is an orthogonal basis of $\mathcal{H}^{q}(M)$ and $\left\{d u \wedge d \vartheta_{j_{1}} \wedge \cdots \wedge d \vartheta_{j_{q-1}} \mid 1 \leq j_{1}<\cdots<j_{q-1} \leq n\right\}$ is an orthogonal basis of $\mathcal{H}^{q}(M, Y)$, which leads to the following facts.

Lemma 3.1.

$$
\begin{aligned}
& H^{q}(M) \cong \mathbb{R}^{\binom{n}{q} \cong \mathbb{R}^{\frac{n!}{q!(n-q)!}}, \quad H^{q}(M, Y) \cong \mathbb{R}^{\binom{n}{q-1}} \cong \mathbb{R}^{\frac{n!}{(q-1)!(n-q+1)!}},} \\
& F^{*}: H^{q}(M) \rightarrow H^{q}(M), \\
& F^{*}\left(d \vartheta_{j_{1}} \wedge \cdots \wedge d \vartheta_{j_{q}}\right)=k_{j_{1}} \cdots k_{j_{q}} d \vartheta_{j_{1}} \wedge \cdots \wedge d \vartheta_{j_{q}}, \\
& F^{*}: H^{q}(M, Y) \rightarrow H^{q}(M, Y), \\
& F^{*}\left(d u \wedge d \vartheta_{j_{1}} \wedge \cdots \wedge d \vartheta_{j_{q-1}}\right)=k_{j_{1}} \cdots k_{j_{q-1}} d u \wedge d \vartheta_{j_{1}} \wedge \cdots \wedge d \vartheta_{j_{q-1}}
\end{aligned}
$$

Lemma 3.1 leads to the following result.

$$
\begin{align*}
& \sum_{q=0}^{n+1}(-1)^{q} \operatorname{Tr}\left(F^{*}: \mathcal{H}^{q}(M) \rightarrow \mathcal{H}^{q}(M)\right)=\sum_{q=0}^{n}(-1)^{q} \sum_{1 \leq j_{1}<\cdots<j_{q} \leq n} k_{j_{1}} \cdots k_{j_{q}} \tag{3.12}\\
& \quad=\left(1-k_{1}\right)\left(1-k_{2}\right) \cdots\left(1-k_{n}\right)=(-1)^{n}\left(k_{1}-1\right)\left(k_{2}-1\right) \cdots\left(k_{n}-1\right), \\
& \sum_{q=0}^{n+1}(-1)^{q} \operatorname{Tr}\left(F^{*}: \mathcal{H}^{q}(M, Y) \rightarrow \mathcal{H}^{q}(M, Y)\right) \\
& \quad=\sum_{q=0}^{n+1}(-1)^{q} \sum_{1 \leq j_{1}<\cdots<j_{q-1} \leq n} k_{j_{1}} \cdots k_{j_{q-1}} \\
& \quad=-\sum_{q=0}^{n}(-1)^{q} \sum_{1 \leq j_{1}<\cdots<j_{q} \leq n} k_{j_{1}} \cdots k_{j_{q}}=-\left(1-k_{1}\right)\left(1-k_{2}\right) \cdots\left(1-k_{n}\right) \\
& \quad=(-1)^{n+1}\left(k_{1}-1\right)\left(k_{2}-1\right) \cdots\left(k_{n}-1\right) .
\end{align*}
$$

Eq.(3.12) together with (3.8) shows (1.5).
On the other hand, since $c=\rho^{\prime}(0)$ or $\rho^{\prime}(1)$, it follows that $0<c<1$.

Hence,

$$
\begin{align*}
& \sum_{\left(u_{0}, y\right) \in \mathcal{F}_{0}(F)} \operatorname{sign} \operatorname{det}\left(I-d F\left(u_{0}, y\right)\right)+\frac{1}{2} \sum_{y \in \mathcal{F}_{0}(f)} \operatorname{sign} \operatorname{det}(I-d f(y)) \tag{3.13}\\
& \quad=(-1)^{n+1}\left(k_{1}-1\right) \cdots\left(k_{n}-1\right) \\
& \quad+\frac{1}{2} \cdot 2 \cdot(-1)^{n}\left(k_{1}-1\right) \cdots\left(k_{n}-1\right)=0
\end{align*}
$$

We note that

$$
\begin{aligned}
& \sum_{q=\text { even }}^{(3.14)} \operatorname{Tr}\left(F^{*}: H^{q}(M, Y) \rightarrow H^{q}(M, Y)\right)=\sum_{q=\text { even } 1 \leq j_{1}<\cdots<j_{q-1} \leq n} \sum_{j_{1}} \cdots k_{j_{q-1}} \\
& \quad=\sum_{q=\text { odd } 1 \leq j_{1}<\cdots<j_{q} \leq n} \sum_{j_{1}} \cdots k_{j_{q}}=\sum_{q=\text { odd }} \operatorname{Tr}\left(F^{*}: H^{q}(M) \rightarrow H^{q}(M)\right), \\
& \sum_{q=\text { odd }} \operatorname{Tr}\left(F^{*}: H^{q}(M, Y) \rightarrow H^{q}(M, Y)\right)=\sum_{q=\text { odd } 1 \leq j_{1}<\cdots<j_{q-1} \leq n} \sum_{j_{1}} \cdots k_{j_{q-1}} \\
& \quad=\sum_{q=\text { even }} \sum_{1 \leq j_{1}<\cdots<j_{q} \leq n} k_{j_{1}} \cdots k_{j_{q}}=\sum_{q=\text { even }} \operatorname{Tr}\left(F^{*}: H^{q}(M) \rightarrow H^{q}(M)\right),
\end{aligned}
$$

which shows that

$$
\begin{align*}
& \sum_{q=\text { even }} \operatorname{Tr}\left(F^{*}:\right.\left.H^{q}(M, Y) \rightarrow H^{q}(M, Y)\right) \tag{3.15}\\
&-\sum_{q=\mathrm{odd}} \operatorname{Tr}\left(F^{*}: H^{q}(M) \rightarrow H^{q}(M)\right)=0 \\
& \sum_{q=\text { even }} \operatorname{Tr}\left(F^{*}: H^{q}(M) \rightarrow H^{q}(M)\right) \\
&-\sum_{q=\mathrm{odd}} \operatorname{Tr}\left(F^{*}: H^{q}(M, Y) \rightarrow H^{q}(M, Y)\right)=0
\end{align*}
$$

We finally consider \mathcal{K}^{q} and $\star_{Y} \mathcal{K}^{q}$. We note that $M=[0,1] \times T^{n}$ and $Y=\{0\} \times T^{n} \cup\{1\} \times T^{n}$. We denote $\iota_{0}:\{0\} \times T^{n} \rightarrow M$ and $\iota_{1}:$ $\{1\} \times T^{n} \rightarrow M$. Then, $\left(\iota_{0}, \iota_{1}\right): Y \rightarrow M$ is the natural inclusion. The harmonic space $\mathcal{H}^{\bullet}(M)$ on M is given by

$$
\begin{align*}
\mathcal{H}^{\bullet}(M) & =\oplus_{q=0}^{n}\left\{d \vartheta_{j_{1}} \wedge \cdots \wedge d \vartheta_{j_{q}} \mid 1 \leq j_{1}<\cdots<j_{q} \leq n\right\} \tag{3.16}\\
& \subset \Omega^{\bullet}(M) .
\end{align*}
$$

Then, \mathcal{K}^{q} is given by

$$
\begin{align*}
\mathcal{K}^{q} & =\left\{\left(d \vartheta_{j_{1}} \wedge \cdots \wedge d \vartheta_{j_{q}}, d \vartheta_{j_{1}} \wedge \cdots \wedge d \vartheta_{j_{q}}\right) \mid 1 \leq j_{1}<\cdots<j_{q} \leq n\right\} \tag{3.17}\\
& \subset \Omega^{\bullet}\left(T^{n}\right) \oplus \Omega^{\bullet}\left(T^{n}\right) .
\end{align*}
$$

We note that an orientation of $\{0\} \times T^{n}$ is opposite to an orientation of $\{1\} \times T^{n}$. We choose and fix an orientation $d \operatorname{vol}\left(T^{n}\right)$ of $\{0\} \times T^{n}$ induced from an orientation of M. Then, the orientation of $\{1\} \times T^{n}$ is $-d \operatorname{vol}\left(T^{n}\right)$. Hence,

$$
\begin{equation*}
\star_{Y} \mathcal{K}^{q}=\left\{\left(\star_{T^{n}} \omega,-\star_{T^{n}} \omega\right) \mid(\omega, \omega) \in \mathcal{K}^{q}\right\} \tag{3.18}
\end{equation*}
$$

Since $B(y)=f(y)$, it follows that

$$
\begin{align*}
& B^{*}=f^{*}: \mathcal{K}^{q} \rightarrow \mathcal{K}^{q} \tag{3.19}\\
& f^{*}\left(d \vartheta_{j_{1}} \wedge \cdots \wedge d \vartheta_{j_{q}}, d \vartheta_{j_{1}} \wedge \cdots \wedge d \vartheta_{j_{q}}\right) \\
& \quad=k_{j_{1}} \cdots k_{j_{q}}\left(d \vartheta_{j_{1}} \wedge \cdots \wedge d \vartheta_{j_{q}}, d \vartheta_{j_{1}} \wedge \cdots \wedge d \vartheta_{j_{q}}\right) \\
& B^{*}=f^{*}: \star_{Y} \mathcal{K}^{n-q} \rightarrow \star \star_{Y} \mathcal{K}^{n-q} \\
& f^{*}\left(\star_{T^{n}} d \vartheta_{i_{1}} \wedge \cdots \wedge d \vartheta_{i_{n-q}},-\star T^{n} d \vartheta_{i_{1}} \wedge \cdots \wedge d \vartheta_{i_{n-q}}\right) \\
& \quad=k_{j_{1}} \cdots k_{j_{q}}\left(\star_{T^{n}} d \vartheta_{i_{1}} \wedge \cdots \wedge d \vartheta_{i_{n-q}},-\star_{T^{n}} d \vartheta_{i_{1}} \wedge \cdots \wedge d \vartheta_{i_{n-q}}\right)
\end{align*}
$$

where $\left\{i_{1}, \cdots, i_{n-q}\right\}=\{1,2, \cdots, n\}-\left\{j_{1}, \cdots, j_{q}\right\}$. This shows that

$$
\begin{equation*}
k_{0}=\operatorname{Tr}\left(B^{*}: \star_{Y} \mathcal{K} \rightarrow \star_{Y} \mathcal{K}\right)-\operatorname{Tr}\left(B^{*}: \mathcal{K} \rightarrow \mathcal{K}\right)=0 \tag{3.20}
\end{equation*}
$$

which together with (3.13) and (3.15) shows Theorem 2.4.
The second example is the following. We denote $\mathbb{D}^{2}=\{z=x+$ $\left.i y \mid x^{2}+y^{2} \leq 1\right\} \subset \mathbb{C}$ and define $f: \mathbb{D}^{2} \rightarrow \mathbb{D}^{2}$ by $f(z)=z^{n}$ for $n \in \mathbb{N}$. Then, $f(z)$ has n fixed points, which are $z=0$ and $z=e^{\frac{2 \pi \ell}{n-1} i}$, $\ell=0,1,2, \cdots, n-2$. Simple computation shows that

$$
d f(0)=\left(\begin{array}{cc}
0 & 0 \tag{3.21}\\
0 & 0
\end{array}\right), \quad d f\left(e^{\frac{2 \pi \ell}{n-1} i}\right)=\left(\begin{array}{cc}
n & 0 \\
0 & n
\end{array}\right)
$$

which shows that
(3.22) $\operatorname{sign} \operatorname{det}(\operatorname{Id}-d f(0))=\operatorname{sign} \operatorname{det}\left(\operatorname{Id}-d f\left(e^{\frac{2 \pi \ell}{n-1} i}\right)\right)=1$.

We choose a Riemann metric on \mathbb{D}^{2}, which is a product one on a collar neighborhood $U=\left(\epsilon_{0}, 1\right] \times S^{1}$ of the boundary. For $\epsilon_{1}=\epsilon_{0}^{\frac{1}{n}}$, it follows that

$$
\begin{equation*}
\left.f\right|_{U}:\left(\epsilon_{1}, 1\right] \times S^{1} \rightarrow\left(\epsilon_{0}, 1\right] \times S^{1}, \quad f\left(r, e^{i \theta}\right)=\left(r^{n}, e^{i n \theta}\right) \tag{3.23}
\end{equation*}
$$

which shows that all the boundary fixed points are repelling. We define $\phi_{0}:\left(\epsilon_{0}, 1\right] \rightarrow\left[0,1-\epsilon_{0}\right)$ by $\phi_{0}(r)=1-r$ and $\phi_{1}:\left(\epsilon_{1}, 1\right] \rightarrow\left[0,1-\epsilon_{1}\right)$ by $\phi_{1}(r)=1-r$. Then, $\left.f\right|_{U}$ can be rewritten by

$$
\begin{aligned}
& \widetilde{\left.f\right|_{U}}:\left[0,1-\epsilon_{1}\right) \times S^{1} \rightarrow\left[0,1-\epsilon_{1}\right) \times S^{1} \\
& \widetilde{\left.f\right|_{U}}\left(r, e^{i \theta}\right)=\left(1-(1-r)^{n}, e^{i n \theta}\right)=\left(n r+r^{2} \kappa(u), e^{i n \theta}\right),
\end{aligned}
$$

where $\kappa(u)=\frac{1}{r^{2}}\left\{1-(1-r)^{n}-n r\right\}$. We denote $f_{Y}:=\left.f\right|_{S^{1}}$ and note that

$$
\begin{equation*}
f_{Y}: S^{1} \rightarrow S^{1}, \quad f_{Y}\left(e^{i \theta}\right)=e^{i n \theta} \tag{3.24}
\end{equation*}
$$

which shows that for $y_{\ell}=e^{\frac{2 \pi \ell}{n-1} i}$,

$$
\begin{equation*}
d f_{Y}\left(y_{\ell}\right): T_{y_{\ell}} S^{1} \rightarrow T_{y_{\ell}} S^{1}, \quad d f_{Y}\left(y_{\ell}\right)(v)=n v \tag{3.25}
\end{equation*}
$$

and sign $\operatorname{det}\left(\operatorname{Id}-d f_{Y}\left(y_{\ell}\right)\right)=-1$. Hence, we obtain the following.

$$
\begin{align*}
& \sum_{x \in \mathcal{F}_{0}(f)} \operatorname{sign} \operatorname{det}(\operatorname{Id}-d f(x))=1, \tag{3.26}\\
& \sum_{x \in \mathcal{F}_{0}(f) \cup \mathcal{F}_{Y}^{-}(f)} \operatorname{sign} \operatorname{det}(\operatorname{Id}-d f(x))=1+(n-1)=n, \\
& \sum_{y \in \mathcal{F}_{0}\left(f_{Y}\right)} \operatorname{sign} \operatorname{det}\left(\operatorname{Id}-d f_{Y}(y)\right)=-(n-1) .
\end{align*}
$$

We note that

$$
\begin{equation*}
\mathcal{K}=\{\text { constant functions }\}, \quad \star_{Y} \mathcal{K}=\{r d \theta \mid r \in \mathbb{R}\}, \tag{3.27}
\end{equation*}
$$

which shows that
(3.28)
$B^{*}=f_{Y}^{*}: \star_{Y} \mathcal{K} \rightarrow \star_{Y} \mathcal{K}, f_{Y}^{*}(d \theta)=n d \theta, B^{*}=f_{Y}^{*}: \mathcal{K} \rightarrow \mathcal{K}, f_{Y}^{*}(1)=1$.
Hence, k_{0} defined in Theorem 2.4 is $n-1$. We note that

$$
\begin{align*}
& H^{0}\left(\mathbb{D}^{2}\right)=\mathbb{R}, H^{1}\left(\mathbb{D}^{2}\right)=H^{2}\left(\mathbb{D}^{2}\right)=0 \tag{3.29}\\
& H^{0}\left(\mathbb{D}^{2}, S^{1}\right)=H^{1}\left(\mathbb{D}^{2}, S^{1}\right)=0, H^{2}\left(\mathbb{D}^{2}, S^{1}\right)=\mathbb{R} \\
& f^{*}: H^{0}\left(\mathbb{D}^{2}\right) \rightarrow H^{0}\left(\mathbb{D}^{2}\right), f^{*}(1)=1 \\
& f^{*}: H^{2}\left(\mathbb{D}^{2}, S^{1}\right) \rightarrow H^{0}\left(\mathbb{D}^{2}, S^{1}\right), f^{*}(1)=n
\end{align*}
$$

Finally, we obtain the following result.

$$
\begin{gathered}
\sum_{q=0}^{2}(-1)^{q} \operatorname{Tr}\left(f^{*}: H^{q}\left(\mathbb{D}^{2}\right) \rightarrow H^{q}\left(\mathbb{D}^{2}\right)\right) \\
=\sum_{x \in \mathcal{F}_{0}(f)} \operatorname{sign} \operatorname{det}(\operatorname{Id}-d f(x))=1, \\
\sum_{q=0}^{2}(-1)^{q} \operatorname{Tr}\left(f^{*}: H^{q}\left(\mathbb{D}^{2}, S^{1}\right) \rightarrow H^{q}\left(\mathbb{D}^{2}, S^{1}\right)\right) \\
=\sum_{x \in \mathcal{F}_{0} \cup \mathcal{F}_{Y}^{-}(f)} \operatorname{sign} \operatorname{det}(\operatorname{Id}-d f(x))=n,
\end{gathered}
$$

which shows (1.5). We also note that

$$
\begin{aligned}
& \sum_{q=\text { even }}^{2}(-1)^{q} \operatorname{Tr}\left(f^{*}: H^{q}\left(\mathbb{D}^{2}, S^{1}\right) \rightarrow H^{q}\left(\mathbb{D}^{2}, S^{1}\right)\right) \\
& \quad-\quad \sum_{q=\text { odd }}^{2}(-1)^{q} \operatorname{Tr}\left(f^{*}: H^{q}\left(\mathbb{D}^{2}\right) \rightarrow H^{q}\left(\mathbb{D}^{2}\right)\right) \\
& =\sum_{x \in \mathcal{F}_{0}(f)} \operatorname{sign} \operatorname{det}(\operatorname{Id}-d f(x))-\frac{1}{2} \sum_{x \in \mathcal{F}_{0}\left(f_{Y}\right)} \operatorname{sign} \operatorname{det}(\operatorname{Id}-d f(x))+\frac{1}{2} k_{0} \\
& \quad=n, \\
& \sum_{q=\text { even }}^{2}(-1)^{q} \operatorname{Tr}\left(f^{*}: H^{q}\left(\mathbb{D}^{2}\right) \rightarrow H^{q}\left(\mathbb{D}^{2}\right)\right) \\
& \quad-\sum_{q=\text { odd }}^{2}(-1)^{q} \operatorname{Tr}\left(f^{*}: H^{q}\left(\mathbb{D}^{2}, S^{1}\right) \rightarrow H^{q}\left(\mathbb{D}^{2}, S^{1}\right)\right) \\
& =\sum_{x \in \mathcal{F}_{0}(f)} \operatorname{sign} \operatorname{det}(\operatorname{Id}-d f(x))-\frac{1}{2} \sum_{x \in \mathcal{F}_{0}\left(f_{Y}\right)} \operatorname{sign} \operatorname{det}(\operatorname{Id}-d f(x))-\frac{1}{2} k_{0} \\
& \quad=1,
\end{aligned}
$$

which shows Theorem 2.4.

References

[1] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. I, Ann. Math., 86 (1967), 374-407.
[2] F. Bei, The L^{2}-Atiyah-Bott-Lefschetz theorem on manifolds with conical singularities: a heat kernel approach, Ann. Glob. Anal. Geom., 44 (2013), 565-605.
[3] V. A. Brenner and M. A. Shubin, Atiyah-Bott-Lefschetz formula for elliptic complexes on manifolds with boundary, J. Soviet Math., 64 (1993), 1069-1111.
[4] P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, 2nd Edition, CRC Press, Inc., 1994.
[5] R.-T. Huang and Y. Lee, The refined analytic torsion and a well-posed boundary condition for the odd signature operator, J. Geom. Phys., 126 (2018), 68-92.
[6] R.-T. Huang and Y. Lee, Lefschetz fixed point formula on a compact Riemannian manifold with boundary for some boundary conditions, Geom. Dedicata., 181 (2016), 43-59.
[7] P. Kirk and M. Lesch, The η-invariant, Maslov index and spectral flow for Dirac-type operators on manifolds with boundary, Forum Math., 16 (2004), no.4, 553-629.
[8] J. Roe, Elliptic operators, topology and asymptotic methods(2nd Ed.), Research Notes in Mathematics series 395, Chapman and Hall/CRC, 1998.

Yoonweon Lee
Department of Mathematics Education
Inha University
Incheon, 22212, Republic of Korea
E-mail: yoonweon@inha.ac.kr

[^0]: Received February 13, 2024; Accepted February 23, 2024.
 2020 Mathematics Subject Classification: Primary: 58J20; Secondary: 14F40.
 Key words and phrases: Lefschetz fixed point formula, simple fixed point, attracting and repelling fixed points, de Rham cohomology, boundary condition.
 *This work was supported by INHA UNIVERSITY Research Grant.

