DOI QR코드

DOI QR Code

열적-알칼리성 전처리 유무에 따른 폴리하이드록시부티레이트의 고온 혐기성 소화 영향 연구

Thermophilic Anaerobic Digestion of Polyhydroxybutyrate with and without Thermo-alkaline Pretreatment

  • 이지현 (국립부경대학교 지구환경시스템과학부(환경공학전공)) ;
  • 이준엽 (국립부경대학교 지구환경시스템과학부(환경공학전공))
  • Jihyeon Lee (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Joonyeob Lee (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University)
  • 투고 : 2023.12.26
  • 심사 : 2024.02.06
  • 발행 : 2024.02.29

초록

The study investigated the effect of thermo-alkaline pretreatment on the solubilization of polyhydroxybutyrate (PHB) and its potential to enhance of thermophilic anaerobic digestion, focusing on biochemical methane potential (BMP) and methane production rate, using two different particle sizes of PHB (1500 ㎛ and 400 ㎛). Thermo-alkaline pretreatment tests were conducted at 90 ℃ for 24 hours with varying NaOH dosages from 0-80% (w/w). BMP tests with untreated PHB exhibited methane production ranging from 150.4~225.4 mL CH4/g COD and 21.5~24.2 mL CH4/g VSS/d, indicating higher methane production for smaller particle sizes of PHB, 400 ㎛. Thermo-alkaline pretreatment tests achieved a 95.3% PHB solubilization efficiency when 400 ㎛ PHB particles were treated with 80% NaOH dosage at 90 ℃ for 24 hours. BMP tests with pretreated PHB showed substantial improvement in thermophilic anaerobic digestion, with an increase of up to 112% in BMP and up to 168% in methane production rate. The results suggest that a combined pretreatment process, including physical (400 ㎛ PHB particles) and thermo-alkaline (90 ℃, 40-80% NaOH dosage, and 24 hours reaction time), is required for high-rate thermophilic anaerobic digestion of PHB with enhanced methane production.

키워드

과제정보

이 논문은 부경대학교 자율창의학술연구비(2022년)에 의하여 연구되었습니다.

참고문헌

  1. Ali, S. S., Elsamahy, T., Koutra, E., Kornaros, M., El-Sheekh, M., Abdelkarim, E. A., Sun, J., 2021, Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal, Science of The Total Environment, 771, 144719.
  2. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., van Lier, J. B., 2009, Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays, Water. Sci. Technol., 59(5), 927-34. https://doi.org/10.2166/wst.2009.040
  3. APHA-AWWA-WEF, 2005, Standard methods for the examination of water and wastewater, 21st ed., American Public Health Association, Washington, DC.
  4. Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J., Le, T. A. T., 2021, Environmental impact of bioplastic use: A review, Heliyon, 7(9).
  5. Benn, N., Zitomer, D., 2018, Pretreatment and anaerobic co-digestion of selected PHB and PLA bioplastics, Frontiers in Environmental Science, 5, 93.
  6. Cazaudehore, G., Guyoneaud, R., Vasmara, C., Greuet, P., Gastaldi, E., Marchetti, R., Leonardi, F., Turon, R., Monlau, F., 2022, Impact of mechanical and thermo-chemical pretreatments to enhance anaerobic digestion of poly (lactic acid), Chemosphere, 297, 133986.
  7. Cazaudehore, G., Monlau, F., Gassie, C., Lallement, A., Guyoneaud, R., 2023, Active microbial communities during biodegradation of biodegradable plastics by mesophilic and thermophilic anaerobic digestion, Journal of Hazardous Materials, 443, 130208.
  8. Garcia-Depraect, O., Lebrero, R., Rodriguez-Vega, S., Bordel, S., Santos-Beneit, F., Martinez-Mendoza, L. J., Aragao-Borner, R., Borner, T., Munoz, R., 2022, Biodegradation of bioplastics under aerobic and anaerobic aqueous conditions: Kinetics, carbon fate and particle size effect, Bioresource Technology, 344, 126265.
  9. Gavala, H. N., Angelidaki, I., Ahring, B. K., 2003, Kinetics and modeling of anaerobic digestion process, Biomethanation I, 57-93.
  10. Le, T. N. T., Lee, J., 2022, Improving anaerobic digestion of polyhydroxybutyrate by Thermal- Alkaline pretreatment, J. Environ. Sci. Int., 31(7), 609-616. https://doi.org/10.5322/JESI.2022.31.7.609
  11. Markl, E., Grunbichler, H., Lackner, M., 2018, PHB-bio based and biodegradable replacement for PP: a review, Nov. Tech. Nutr. Food. Sci., 2(4), 206-209.
  12. McGlade, J., Samy Fahim, I., Green, D., Landrigan, P., Andrady, A., Costa, M., Geyer, R., Gomes, R., Hwai, A. T. S., Jambeck, J., Li, D., Rochman, C., Ryan, P., Thiel, M., Thompson, R., Townsend, K., Turra, A., 2021, From pollution to solution: a global assessment of marine litter and plastic pollution, United Nations Environment Programme.
  13. MoE (Ministry of Environment), 2022, Present Status of The National Waste Generation and Treatment, 2021, Korea.
  14. Mu, L., Zhang, L., Ma, J., Zhu, K., Chen, C., Li, A., 2021, Enhanced biomethanization of waste polylactic acid plastic by mild hydrothermal pretreatment: Taguchi orthogonal optimization and kinetics modeling, Waste Management, 126, 585-596.
  15. Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., Beas, I. N., 2021, An overview of plastic waste generation and management in food packaging industries, Recycling, 6(1), 12.
  16. PlasticsEurope, 2021, Plastics-the Facts 2021. An analysis of european plastics production, demand and waste data, Plast. Eur.
  17. Rahmani, A. M., Gahlot, P., Moustakas, K., Kazmi, A. A., Ojha, C. S. P., Tyagi, V. K., 2022, Pretreatment methods to enhance solubilization and anaerobic biodegradability of lignocellulosic biomass (wheat straw): Progress and challenges, Fuel, 319, 123726.
  18. Yasin, N. M., Akkermans, S., Van Impe, J. F. M., 2022, Enhancing the biodegradation of (bio) plastic through pretreatments: A critical review, Waste Management, 150, 1-12.