DOI QR코드

DOI QR Code

인간간엽줄기세포의 연골세포 분화 유도 성장인자 및 주사침 크기 차이에 따른 세포반응에 대한 in vitro 연구

A study of growth factors, chondrogenic differentiation of mesenchymal stem cells and cell response by needle size differences in vitro

  • 박정윤 (강동경희대학교치과병원 치과보철과 경희대학교 치과대학 치과보철학교실) ;
  • 황유정 (강동경희대학교치과병원 치과보철과 경희대학교 치과대학 치과보철학교실) ;
  • 최조셉준석 (강동경희대학교치과병원 치과보철과 경희대학교 치과대학 치과보철학교실) ;
  • 전진영 (강동경희대학교치과병원 치과보철과 경희대학교 치과대학 치과보철학교실) ;
  • 이석원 (강동경희대학교치과병원 치과보철과 경희대학교 치과대학 치과보철학교실)
  • Jeongyun Park (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Yu Jeong Hwang (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Joseph Junesirk Choi (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Jin Young Chon (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Suk Won Lee (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University)
  • 투고 : 2023.12.06
  • 심사 : 2024.01.23
  • 발행 : 2024.02.29

초록

목적: 인간간엽줄기세포를 연골세포로 분화유도하는 성장인자 규명 및 주사침 크기 차이에 따른 세포증식 증진 비교이다. 연구 재료 및 방법: 인간간엽줄기세포를 연골세포유도배지에서 14, 21, 28일 배양하여 BMP-2, BMP-4, BMP-6, BMP-7, BMP-13, FGF-2, FGF-18, IGF-1, TGF-β1. TGF-β2, TGF-β3를 투여한 군들과 대조군에서 SOX-5, SOX-6, SOX-9 및 FOXO1A의 발현량을 분석하였다. 18, 21, 26 게이지(G) 주사침을 사용하여 배양접시에 인간간엽줄기세포를 접종하고 24, 48, 72시간 후 각각 세포증식을 측정하였다. 결과: 기존에 알려진 FGF, IGF-1, TGFβ1와 함께, BMP-2, BMP-4, BMP-6, BMP-7 등 BMP family 성장인자들에 의하여 연골세포분화 전사인자 유전자들인 SOX-5, SOX-6, SOX-9, FOXO1A의 유전자발현이 증가하였다. 48시간에서는 가장 작은 주사침인 26G군이 대조군 및 18G군에 비하여 유의한 세포증식 증진을 보였으며, 72시간에서도 가장 작은 주사침인 26G군이 대조군에 비하여 유의한 세포증식 증진을 보였다. 결론: 인간간엽줄기세포의 연골세포분화 유도능을 가진 성장인자들을 고찰할 수 있었고 주사침 크기에 따른 세포증식 변화를 규명할 수 있었다.

Purpose: This aim of this study was to demonstrate growth factors that differentiate human mesenchymal stem cells into chondrocytes and to evaluate cell proliferation enhancement by needle size differences. Materials and Methods: Human mesenchymal stem cells were cultured in chondrogenic medium supplemented with BMP-2, BMP-4, BMP-6, BMP-7, BMP-13, FGF-2, FGF-18, IGF-1, TGF-β1, TGF-β2, TGF-β3 and without growth factors for 14, 21, and 28 days. Then, the expression levels of SOX-5, SOX-6, SOX-9 and FOXO1A were comparatively analyzed. Human mesenchymal stem cells were inoculated into culture dishes using 18, 21, and 26 gauge (G) needles, and cell proliferation was measured after 24, 48, and 72 hours, respectively. Results: In addition to the previously known FGF, IGF-1, and TGFβ1,the BMP family growth factors such as BMP-2, BMP-4, BMP-6, and BMP-7 increased the expression of chondrocyte differentiation genes SOX-5, SOX-6, SOX-9, and FOXO1A. At 48 hours, the 26G group, the smallest needle, showed significant cell proliferation improvement compared to the control group and the 18G group. At 72 hours, the 26G group, the smallest needle, showed significant increase in cell proliferation compared to the control group. Conclusion: Through this study, growth factors with the ability to induce chondrocyte differentiation of human mesenchymal stem cells were investigated, and cell proliferation changes by needle size differences were determined.

키워드

참고문헌

  1. Kai S, Kai H, Tabata O, Shiratsuchi Y, Ohishi M. Long-term outcomes of nonsurgical treatment in nonreducing anteriorly displaced disk of the temporomandibular joint. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;85:258-67. https://doi.org/10.1016/S1079-2104(98)90005-1
  2. Monje-Gil F, Nitzan G, Gonzalez-Garcia R. Tem-poromandibular joint arthrocentesis. Review of the literature. Med Oral Patol Oral Cir Bucal 2012;17:e575-81. https://doi.org/10.4317/medoral.17670
  3. Wang L, Tran I, Seshareddy K, Weiss ML, Detamore MS. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng Part A 2009;15:2259-66. https://doi.org/10.1089/ten.tea.2008.0393
  4. Danisovic L, Varga I, Polak S. Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue Cell 2012;44:69-73. https://doi.org/10.1016/j.tice.2011.11.005
  5. Li J, Zhao Z, Liu J, Huang N, Long D, Wang J, Li X, Liu Y. MEK/ERK and p38 MAPK regulate chondrogenesis of rat bone marrow mesenchymal stem cells through delicate interaction with TGF-β1/Smads pathway. Cell Prolif 2010;43:333-43. https://doi.org/10.1111/j.1365-2184.2010.00682.x
  6. Lefebvre V, Smits P. Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today 2005;75:200-12. https://doi.org/10.1002/bdrc.20048
  7. Kalpakci KN, Kim EJ, Athanasiou KA. Assessment of growth factor treatment on fibrochondrocyte and chondrocyte co-cultures for TMJ fibrocartilage engineering. Acta Biomater 2011;7:1710-8. https://doi.org/10.1016/j.actbio.2010.12.015
  8. Pizette S, Niswander L. BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev Biol 2000;219:237-49. https://doi.org/10.1006/dbio.2000.9610
  9. Hassel S, Schmitt S, Hartung A, Roth M, Nohe A, Petersen N, Ehrlich M, Henis YI, Sebald W, Knaus P. Initiation of Smad-dependent and Smad-independent signaling via distinct BMP-receptor complexes. J Bone Joint Surg Am 2003;85-A Suppl 3:44-51. https://doi.org/10.2106/00004623-200300003-00009
  10. Jin EJ, Lee SY, Choi YA, Jung JC, Bang OS, Kang SS. BMP-2-enhanced chondrogenesis involves p38 MAPK-mediated down-regulation of Wnt-7a pathway. Mol Cells 2006;22:353-9. https://doi.org/10.1016/S1016-8478(23)17431-0
  11. Tang X, Fan L, Pei M, Zeng L, Ge Z. Evolving concepts of chondrogenic differentiation: history, state-of-the art and future perspect ives. Eur Cell Mater 2015;30:12-27. https://doi.org/10.22203/eCM.v030a02
  12. Fortier LA, Lust G, Mohammed HO, Nixon AJ. Coordinate upregulation of cartilage matrix synthesis in fibrin cultures supplemented with exogenous insulin-like growth factor-I. J Orthop Res 1999;17:467-74. https://doi.org/10.1002/jor.1100170403
  13. Sah RL, Chen AC, Grodzinsky AJ, Trippel SB. Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys 1994;308:137-47. https://doi.org/10.1006/abbi.1994.1020
  14. O'Conor CJ, Case N, Guilak F. Mechanical regulation of chondrogenesis. Stem Cell Res Ther 2013;4:61.
  15. Maul TM, Chew DW, Nieponice A, Vorp DA. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol 2011;10:939-53. https://doi.org/10.1007/s10237-010-0285-8
  16. Luu YK, Capilla E, Rosen CJ, Gilsanz V, Pessin JE, Judex S, Rubin CT. Mechanical Stimulation of Mesenchymal Stem Cell Proliferation and Differentiation Promotes Osteogenesis While Preventing Dietary-Induced Obesity. J Bone Miner Res 2009;24:50-61. https://doi.org/10.1359/jbmr.080817
  17. Stops AJ, Heraty KB, Browne M, O'Brien FJ, McHugh PE. A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow. J Biomech 2010;43:618-26. https://doi.org/10.1016/j.jbiomech.2009.10.037
  18. Davisson T, Kunig S, Chen A, Sah R, Ratcliffe A. Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J Orthop Res 2002;20:842-8. https://doi.org/10.1016/S0736-0266(01)00160-7
  19. Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ. Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 2005;320:269-76. https://doi.org/10.1007/s00441-004-1075-3
  20. Ng F, Boucher S, Koh S, Sastry KS, Chase L, Lakshmipathy U, Choong C, Yang Z, Vemuri MC, Rao MS, Tanavde V. PDGF, TGF-β, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 2008;112:295-307. https://doi.org/10.1182/blood-2007-07-103697
  21. Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 2005;203:398-409. https://doi.org/10.1002/jcp.20238
  22. Park KH, Na K. Effect of growth factors on chondrogenic differentiation of rabbit mesenchymal cells embedded in injectable hydrogels. J Biosci Bioeng 2008;106:74-9.
  23. Moore EE, Bendele AM, Thompson DL, Littau A, Waggie KS, Reardon B, Ellsworth JL. Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage 2005;13:623-31. https://doi.org/10.1016/j.joca.2005.03.003
  24. Blaney Davidson EN, van der Kraan PM, van den Berg WB. TGF-beta and osteoarthritis. Osteoarthritis Cartilage 2007;15:597-604. https://doi.org/10.1016/j.joca.2007.02.005
  25. Longobardi L, O'Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, Horton WA, Moses HL, Spagnoli A. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 2006;21:626-36. https://doi.org/10.1359/jbmr.051213
  26. An C, Cheng Y, Yuan Q, Li J. IGF-1 and BMP-2 induces differentiation of adipose-derived mesenchymal stem cells into chondrocytes-like cells. Ann Biomed Eng 2010;38:1647-54. https://doi.org/10.1007/s10439-009-9892-x
  27. Shin HY, Smith ML, Toy KJ, Williams PM, Bizios R, Gerritsen ME. VEGF-C mediates cyclic pressure-induced endothelial cell proliferation. Physiol Genomics 2002;11:245-51. https://doi.org/10.1152/physiolgenomics.00068.2002
  28. Takahashi I, Nuckolls GH, Takahashi K, Tanaka O, Semba I, Dashner R, Shum L, Slavkin HC. Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. J Cell Sci 1998;111:2067-76. https://doi.org/10.1242/jcs.111.14.2067
  29. Huang CY, Hagar KL, Frost LE, Sun Y, Cheung HS. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 2004;22:313-23. https://doi.org/10.1634/stemcells.22-3-313
  30. Subramony SD, Su A, Yeager K, Lu HH. Combined effects of chemical priming and mechanical stimulation on mesenchymal stem cell differentiation on nanofiber scaffolds. J Biomech 2014;47:2189-96. https://doi.org/10.1016/j.jbiomech.2013.10.016
  31. Moreau JE, Bramono DS, Horan RL, Kaplan DL, Altman GH. Sequential biochemical and mechanical stimulation in the development of tissue-engineered ligaments. Tissue Eng Part A 2008;14:1161-72. https://doi.org/10.1089/ten.tea.2007.0147
  32. Safshekan F, Tafazzoli-Shadpour M, Shokrgozar MA, Haghighipour N, Mahdian R, Hemmati A. Intermittent hydrostatic pressure enhances growth factor-induced chondroinduction of human adipose-derived mesenchymal stem cells. Artif Organs 2012;36:1065-71. https://doi.org/10.1111/j.1525-1594.2012.01507.x