DOI QR코드

DOI QR Code

The Anti-Diabetic Pinitol Improves Damaged Fibroblasts

  • Ji-Yong Jung (Amorepacific Corporation R&D Center) ;
  • Joong Hyun Shim (Department of Biohealth-Convergence, Seoul Women's University) ;
  • Su Hae Cho (Research Institute for Biomedical and Health Science, Konkuk University) ;
  • Il-Hong Bae (Amorepacific Corporation R&D Center) ;
  • Seung Ha Yang (Amorepacific Corporation R&D Center) ;
  • Jinsick Kim (Research Institute for Biomedical and Health Science, Konkuk University) ;
  • Hye Won Lim (Research Institute for Biomedical and Health Science, Konkuk University) ;
  • Dong Wook Shin (Research Institute for Biomedical and Health Science, Konkuk University)
  • Received : 2023.12.15
  • Accepted : 2023.12.22
  • Published : 2024.03.01

Abstract

Pinitol (3-O-Methyl-D-chiro-inositol) has been reported to possess insulin-like effects and is known as one of the anti-diabetic agents to improve muscle, liver, and endothelial cells. However, the beneficial effects of pinitol on the skin are not well known. Here, we investigated whether pinitol had effects on human dermal fibroblasts (HDFs), and human dermal equivalents (HDEs) irradiated with ultraviolet A (UVA), which causes various damages including photodamage in the skin. We observed that pinitol enhanced wound healing in UVA-damaged HDFs. We also found that pinitol significantly antagonized the UVA-induced up-regulation of matrix metalloproteinase 1 (MMP1), and the UVA-induced down-regulation of collagen type I and tissue inhibitor of metalloproteinases 1 (TIMP1) in HDEs. Electron microscopy analysis also revealed that pinitol remarkably increased the number of collagen fibrils with regular banding patterns in the dermis of UVA-irradiated human skin equivalents. Pinitol significantly reversed the UVA-induced phosphorylation levels of ERK and JNK but not p38, suggesting that this regulation may be the mechanism underlying the pinitol-mediated effects on UVA-irradiated HDEs. We also observed that pinitol specifically increased Smad3 phosphorylation, which is representative of the TGF-β signaling pathway for collagen synthesis. These data suggest that pinitol exerts several beneficial effects on UVA-induced damaged skin and can be used as a therapeutic agent to improve skin-related diseases.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2022R1A2C1093305).

References

  1. Ahmed, I. and Goldstein, B. (2006) Diabetes mellitus. Clin. Dermatol. 24, 237-246. https://doi.org/10.1016/j.clindermatol.2006.04.009
  2. Attinger, C. E. and Brown, B. J. (2012) Amputation and ambulation in diabetic patients: function is the goal. Diabetes Metab. Res. Rev. 28, 93-96. https://doi.org/10.1002/dmrr.2236
  3. Bang, J. S. and Choung, S. Y. (2020) Inhibitory effect of oyster hydrolysate on wrinkle formation against UVB irradiation in human dermal fibroblast via MAPK/AP-1 and TGFβ/Smad pathway. J. Photochem. Photobiol. B 209, 111946.
  4. Bates, S. H., Jones, R. B. and Bailey, C. J. (2000) Insulin-like effect of pinitol. Br. J. Pharmacol. 130, 1944-1948. https://doi.org/10.1038/sj.bjp.0703523
  5. Dang, N. T., Mukai, R., Yoshida, K. and Ashida, H. (2010) D-pinitol and myo-inositol stimulate translocation of glucose transporter 4 in skeletal muscle of C57BL/6 mice. Biosci. Biotechnol. Biochem. 74, 1062-1067. https://doi.org/10.1271/bbb.90963
  6. de Jager, T. L., Cockrell, A. E. and Du Plessis, S. S. (2017) Ultraviolet light induced generation of reactive oxygen species. Adv. Exp. Med. Biol. 996, 15-23. https://doi.org/10.1007/978-3-319-56017-5_2
  7. Fisher, G. J., Kang, S., Varani, J., Bata-Csorgo, Z., Wan, Y., Datta, S. and Voorhees, J. J. (2002) Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 138, 1462-1470.
  8. Gambichler, T., Skrygan, M., Tomi, N. S., Breuksch, S., Altmeyer, P. and Kreuter, A. (2007) Significant downregulation of transforming growth factor-beta signal transducers in human skin following ultraviolet-A1 irradiation. Br. J. Dermatol. 156, 951-956. https://doi.org/10.1111/j.1365-2133.2007.07802.x
  9. Gao, W., Wang, Y. S., Hwang, E., Lin, P., Bae, J., Seo, S. A., Yan, Z. and Yi, T. H. (2018) Rubus idaeus L. (red raspberry) blocks UVB-induced MMP production and promotes type I procollagen synthesis via inhibition of MAPK/AP-1, NF-κβ and stimulation of TGF-β/Smad, Nrf2 in normal human dermal fibroblasts. J. Photochem. Photobiol. B 185, 241-253. https://doi.org/10.1016/j.jphotobiol.2018.06.007
  10. Hada, B., Yoo, M. R., Seong, K. M., Jin, Y. W., Myeong, H. K. and Min, K. J. (2013) D-chiro-inositol and pinitol extend the life span of Drosophila melanogaster. J. Gerontol. A Biol. Sci. Med. Sci. 68, 226-234. https://doi.org/10.1093/gerona/gls156
  11. Hameedaldeen, A., Liu, J., Batres, A., Graves, G. S. and Graves, D. T. (2014) FOXO1, TGF-β regulation and wound healing. Int. J. Mol. Sci. 15, 16257-16269. https://doi.org/10.3390/ijms150916257
  12. Han, A., Chien, A. L. and Kang, S. (2014) Photoaging. Dermatol. Clin. 32, 291-299. https://doi.org/10.1016/j.det.2014.03.015
  13. Han, S. H., Ballinger, E., Choung, S. Y. and Kwon, J. Y. (2022) Anti-photoaging effect of hydrolysates from pacific whiting skin via MAPK/AP-1, NF-κB, TGF-β/Smad, and Nrf-2/HO-1 signaling pathway in UVB-induced human dermal fibroblasts. Mar. Drugs 20, 308.
  14. Heo, H., Lee, H., Yang, J., Sung, J., Kim, Y., Jeong, H. S. and Lee, J. (2021) Protective activity and underlying mechanism of ginseng seeds against UVB-induced damage in human fibroblasts. Antioxidants (Basel) 10, 403.
  15. Hong, Y. F., Lee, H. y., Jung, B. J, Jang, S., Chung, D. K. and Kim H. (2015) Lipoteichoic acid isolated from Lactobacillus plantarum down-regulates UV-induced MMP-1 expression and up-regulates type I procollagen through the inhibition of reactive oxygen species generation. Mol. Immunol. 67, 248-255. https://doi.org/10.1016/j.molimm.2015.05.019
  16. Ibuki, A., Akase, T., Nagase, T., Minematsu, T., Nakagami, G., Horii, M., Sagara, H., Komeda, T., Kobayashi, M., Shimada, T., Aburada, M., Yoshimura, K., Sugama, J. and Sanada, H. (2012) Skin fragility in obese diabetic mice: possible involvement of elevated oxidative stress and upregulation of matrix metalloproteinases. Exp. Dermatol. 21, 178-183. https://doi.org/10.1111/j.1600-0625.2011.01409.x
  17. Jin, Y. J., Ji, Y., Jang, Y. P. and Choung, S. Y. (2021) Acer tataricum subsp. ginnala inhibits skin photoaging via regulating MAPK/AP-1, NF-κB, and TGFβ/Smad signaling in UVB-irradiated human dermal fibroblasts. Molecules 26, 662.
  18. Kim, H. I., Jeong, Y. U., Kim, J. H. and Park, Y. J. (2018a) 3,5,6,7,8,3',4'-Heptamethoxyflavone, a citrus flavonoid, inhibits collagenase activity and induces type I procollagen synthesis in HDFn cells. Int. J. Mol. Sci. 19, 620.
  19. Kim, S., Lee, Y., Seo, J. E., Cho, K. H. and Chung, J. H. (2008) Caveolin-1 increases basal and TGF-beta1-induced expression of type I procollagen through PI-3 kinase/Akt/mTOR pathway in human dermal fibroblasts. Cell. Signal. 20, 1313-1319. https://doi.org/10.1016/j.cellsig.2008.02.020
  20. Kim, W. S., Kim, W. K., Choi, N., Suh, W., Lee, J., Kim, D. D., Kim, I. and Sung, J. H. (2018b) Development of S-methylmethionine sulfonium derivatives and their skin-protective effect against ultraviolet exposure. Biomol. Ther. (Seoul) 26, 306-312. https://doi.org/10.4062/biomolther.2017.109
  21. Lee, J. Y., Kim, Y. K., Seo, J. Y., Choi, C. W., Hwang, J. S., Lee, B. G., Chang, I. S. and Chung, J. H. (2008) Loss of elastic fibers causes skin wrinkles in sun-damaged human skin. J. Dermatol. Sci. 50, 99-107. https://doi.org/10.1016/j.jdermsci.2007.11.010
  22. Limtrakul, P., Yodkeeree, S., Punfa, W. and Srisomboonm, J. (2016) Inhibition of the MAPK signaling pathway by red rice extract in UVB-irradiated human skin fibroblasts. Nat. Prod. Commun. 11, 1877-1882. https://doi.org/10.1177/1934578X1601101226
  23. Liu, X., Zhang, R., Shi, H., Li, X., Li, Y., Taha, A. and Xu, C. (2018) Protective effect of curcumin against ultraviolet A irradiation induced photoaging in human dermal fibroblasts. Mol. Med. Rep. 17, 7227-7237.
  24. Nascimento, N. R., Lessa, L. M., Kerntopf, M. R., Sousa, C. M., Alves, R. S., Queiroz, M. G., Price, J., Heimark, D. B., Larner, J., Du, X., Brownlee, M., Gow, A., Davis, C. and Fonteles, M. C. (2006) Inositols prevent and reverse endothelial dysfunction in diabetic rat and rabbit vasculature metabolically and by scavenging superoxide. Proc. Natl. Acad. Sci. U. S. A. 103, 218-223. https://doi.org/10.1073/pnas.0509779103
  25. Nern, K. (2002) Dermatologic conditions associated with diabetes. Curr. Diab. Rep. 2, 53-59. https://doi.org/10.1007/s11892-002-0058-6
  26. Oh, J. H., Joo, Y. H., Karadeniz, F., Ko, J. and Kong, C. S. (2020) Syringaresinol inhibits UVA-induced MMP-1 expression by suppression of MAPK/AP-1 signaling in HaCaT keratinocytes and human dermal fibroblasts. Int. J. Mol. Sci. 21, 3981.
  27. Papaccio, F., D Arino, A., Caputo, S. and Bellei, B. (2022) Focus on the contribution of oxidative stress in skin aging. Antioxidants (Basel) 11, 1121.
  28. Rittie, L. and Fisher, G. J. (2015) Natural and sun-induced aging of human skin. Cold Spring Harb. Perspect. Med. 5, a015370.
  29. Oikarinen, A., Mortenhumer, M., Kallioinen, M. and Savolainen, E. R (1987) Necrobiosis lipoidica: ultrastructural and biochemical demonstration of a collagen defect. J. Invest. Dermatol. 88, 227-232. https://doi.org/10.1111/1523-1747.ep12525395
  30. Shim, J. H., Shin, D. W., Lee, T. R., Kang, H. H., Jin, S. H. and Noh, M. (2012) The retinoic acid-induced up-regulation of insulin-like growth factor 1 and 2 is associated with prolidase-dependent collagen synthesis in UVA-irradiated human dermal equivalents. J. Dermatol. Sci. 66, 51-59. https://doi.org/10.1016/j.jdermsci.2011.12.008
  31. Sivakumar, S., Palsamy, P. and Subramanian, S. P. (2010) Attenuation of oxidative stress and alteration of hepatic tissue ultrastructure by D-pinitol in streptozotocin-induced diabetic rats. Free. Radic. Res. 44, 668-678. https://doi.org/10.3109/10715761003733901
  32. Werner, S., Krieg, T. and Smola, H. (2007) Keratinocyte-fibroblast interactions in wound healing. J. Invest. Dermatol. 127, 998-1008. https://doi.org/10.1038/sj.jid.5700786
  33. Xu, Q., Hou, W., Zheng, Y., Liu, C., Gong, Z., Lu, C., Lai, W. and Maibach, H. I. (2014) Ultraviolet A-induced cathepsin K expression is mediated via MAPK/AP-1 pathway in human dermal fibroblasts. PLoS One 9, e102732.
  34. Yap, A., Nishiumi, S., Yoshida, K. and Ashida, H. (2007) Rat L6 myotubes as an in vitro model system to study GLUT4-dependent glucose uptake stimulated by inositol derivatives. Cytotechnology 55, 103-108. https://doi.org/10.1007/s10616-007-9107-y
  35. Yip, K. H., Yip, Y. C. and Tsui, W. K. (2023) Thoughts and experiences regarding leg amputation among patients with diabetic foot ulcers: a phenomenological study. Int. Wound J. 20, 2159-2168. https://doi.org/10.1111/iwj.14094
  36. Zhao, H., Park, B., Kim, M. J., Hwang, S. H., Kim, T. J., Kim, S. U., Kwon, I. and Hwang, J. S. (2023) The effect of γ-aminobutyric acid intake on UVB-induced skin damage in hairless mice. Biomol. Ther. (Seoul) 31, 640-647. https://doi.org/10.4062/biomolther.2023.085