
1. Introduction

Waves are a complex phenomenon that occurs in the ocean or 
coastal areas owing to environmental variables, such as winds, and 
they play an important role in various marine and maritime fields. 
Particularly, safety at sea, maritime transportation, stability of marine 
structures, and marine ecosystems are directly affected by waves. 
According to the marine accident statistics from 2018 to 2022 
provided by the Ministry of Oceans and Fisheries, wave-related 
accidents accounted for 21% of the total marine accidents (Ministry of 
Oceans and Fisheries, 2023). Therefore, accurate wave predictions are 
essential for ensuring the safety of navigating ships and marine 
operations at new locations, managing resources, and producing 
energy. 

Previously used wave prediction methods include numerical 
modeling methods and statistical modeling methods. The numerical 
modeling methods for predicting waves simulate the motions of wave 
patterns using mathematical models. These methods have evolved 
through various models, such as the Sea Wave Modeling Project 
(SWAMP) (SWAMP Group, 1985), the Shallow Water 
Intercomparison of Wave Model (SWIM) (Group et al., 1985), the 

Wave Model (WAM) (Group, 1988), and the Wave Watch III (WW3) 
(Tolman, 2009). Carter (1982) used the Joint North Sea Wave Project 
(JONSWAP) method to predict wave height and wave period, and You 
and Park (2010) utilized a regional wave prediction system (Regional 
Wave Watch III, RWW3), which replaces the WAM model, to analyze 
the characteristics of the waves in the waters around Korea. In 
particular, Son and Do (2021) calibrated and optimized the 
third-generation Simulation Waves Nearshore (SWAN) model, which 
predicts waves using the wind field. These models utilize mathematical 
equations to represent the physical process of wave generation. The 
numerical methods have a high accuracy because they consider various 
factors, such as wind, water depth, current speed, and current direction. 
However, these methods require complex computations and substantial 
computing time, which lead to considerable costs. On the other hand, 
the statistical modeling methods use statistical techniques to predict 
waves. Furthermore, these methods analyze past wave data to discern 
patterns and trends and predict future waves. As the statistical modeling 
methods have lower computational complexity than the numerical 
methods, they have faster execution times. However, they have lower 
accuracy because they cannot consistently predict irregular and 
nonlinear waves. Kang et al. (2016) employed the autoregressive 
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integrated moving average (ARIMA) model among the statistical 
models to predict significant wave heights in the East Sea of Korea. In 
addition, Adytia et al. (2018) applied the wind data provided by the 
European Centre for Medium-range Weather Forecasts (ECMWF) to 
the ARIMA model to predict wind and waves in the coastal area of 
Jakarta. Moreover, machine learning specialized for processing 
nonlinear data was proposed to overcome the limitations of the 
numerical and statistical modeling methods, and wave predictions have 
been performed based on this approach. 

Machine learning has advanced over the past decade, and it can be 
applicable for predictive analyses in all fields, including revenue 
prediction, market price forecast, health prediction, and wave 
prediction (Masini et al., 2023). Predictions of marine environmental 
variables are performed by training machine learning models on data 
collected from marine observation equipment. Kumar et al. (2018) 
used an extreme learning machine to predict wave heights in the 
waters of Mexico, Brazil, and Korea. Domala et al. (2022) employed 
machine learning methods, including random forest, XGBoost, 
gradient boosting, and FBProphet, to predict waves in the North 
Atlantic Ocean and the coastal waters of Puerto Rico and Hawaii. They 
also presented optimal algorithms. Hu et al. (2021) used the XGBoost 
and long short-term memory (LSTM) methods to predict waves in 
Lake Erie, North America. Kim et al. (2022) developed the 
STG-OceanWaveNet model based on deep learning and used it to 
predict waves for a 48-h period based on the significant wave height, 
mean wave period and direction, and wind data. Machine learning 
methods, such as random forest and XGBoost, do not reflect the 
temporal dependency of the data and do not capture the sequential 
nature of the data. Consequently, they have low prediction accuracy. 
On the contrary, recurrent neural networks (RNNs) have been 
designed to use sequential or time-series data. As opposed to 
conventional feedforward neural networks, in which information 
moves from the input layer to the output layer in one direction only, 
RNNs have recursive connections that enable them to retain 
information from previous inputs. 

This study employs RNN, LSTM, and gated recurrent unit (GRU) 
models, which have RNNs. Unlike previous studies that utilized the 
wind field data, this study additionally utilizes wave data from 
previous time periods to improve the accuracy of wave predictions. 
Furthermore, data from multiple observation points in the sea are 
integrated, rather than a single observation point, to minimize spatial 
constraints. The models are evaluated using the data from each 
observation point. Furthermore, to assess the performance of the 
models, the prediction results are compared with the results of the 
algorithms optimized for each observation point. The suggested wave 
prediction model by sea area can ensure the safety of marine and 
maritime operations and the efficient management of resources at new 
locations. In addition, as data provided by the Korea Hydrographic and 
Oceanographic Agency (KHOA) can be used without processing them, 
it is expected that real-time wave predictions will be performed 
through online learning in the future.

2. Prediction Model

This study introduces the RNN, LSTM, and GRU deep learning 
models suitable for processing time-series data, and the structure of 
each model is illustrated in Fig. 1. Fig. 1(a) shows the structure of an 
RNN, which is specialized for processing sequential data, such as 
time-series data. The input to this neural network consists of the 
present and the past, and it has a hidden state. In addition, information 
is passed to itself at each step of the network (Pushpam and Enigo, 
2020). Here, the input of the current time and the hidden state of the 
previous time are considered. Moreover,   denotes the weight 
matrix used to update the hidden state, and   denotes the bias of the 
hidden state. tanh is a hyperbolic tangent activation function, which 
limits input values to a range between -1 and 1. RNNs calculate the 
hidden state of the current time   by combining the current input   
and the hidden state of the previous time    .   is then passed on to 
the next time step to maintain continuous information. However, the 
vanishing gradient and exploding gradient problems occur in RNNs, 
depending on the values of the weights. To solve these problems, 
Hochreiter and Schmidhuber (1997) introduced a gate mechanism and 
proposed an LSTM, which learns data with long-term dependencies 
more effectively than RNNs. However, the LSTM had several 
limitations, including the absence of the forget gate, complexity, and 
computational cost. Gers et al. (2000) proposed an improved version 
of LSTM that has been used to date. Fig. 1(b) shows the structure of an 
LSTM, which consists of a forget gate, an input gate, an output gate, 
and an update cell state. This structure is an enhanced version 
compared with that of RNNs. The forget gate determines whether to 
preserve or delete the information from the cell state of the previous 
time, and the output is calculated by combining the current input and 
the hidden state of the previous time. The input gate plays the role of 
determining how much to update the cell state at the current time step, 
and it consists of the output of the input gate and a candidate for the 
cell state. The cell state adds the current input to the past information 
to represent the overall state at the current time. The output gate plays 
the role of determining the hidden state based on the cell state at the 
current time, and it is composed of two main elements: the output of 
the output gate and the determination of the hidden state at the current 
time. Finally, in the determination of the hidden state, the hidden state 
at the current time is determined by performing an element-wise 
multiplication of the output of the output gate and the cell state at the 
current time via tanh. LSTMs have three gates and a cell state. Hence, 
they have the drawback of having a complex structure, which increases 
the training time and computational complexity. Furthermore, there is 
a risk of overfitting if the amount of data is small. To address these 
issues of LSTMs, Chung et al. (2014) proposed the GRU, which only 
has a reset gate, an update gate, and a hidden state. Fig. 1(c) shows the 
structure of a GRU, which consists of two gates and a hidden state. The 
reset gate plays the role of determining whether the information from 
the previous hidden state will be reflected in the calculation of the 
current hidden state, whereas the update gate determines which 
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information from the previous hidden state will be retained and which 
information from the previous hidden state will be replaced with the 
new hidden state. The candidate hidden state is determined by 
combining the current input with the previous hidden state adjusted by 
the reset gate. Finally, the GRU determines the final hidden state by 
performing an element-wise multiplication of the update gate result 
from the previous hidden state and the update gate result from the 
candidate hidden state and adding them. 

∶ ×


  (1)

∶× ×


 
 (2)

∶× ×


 
 (3)

Eqs. (1)–(3) represent the process of calculating the learning 
parameters for each model using mathematical expressions. Here, 
  denotes the number of input units that are fed into the model, 
and   denotes the number of hidden state units for the model. 
The number of learning parameters for all the models is calculated by 
combining   and  , and this number varies according to the 
structure of the model. Comparing Eq. (2) with Eq. (3), it is observed 
that a GRU, a simplified structure of an LSTM, has 25% fewer 
learning parameters than the LSTM and is computationally more 
efficient. 

3. Experimental Data Setup

3.1 Dataset and Analysis
The data used in this study were the oceanographic buoy data from 

the KHOA. Fig. 2 shows the locations of the oceanographic buoys.
The observation points in the East Sea include four locations besides 

Gyeongpodae Beach, and three locations excluding Ulleungdo are 
beaches. In the South Sea, there are five locations besides Haeundae 
Beach. Moreover, in both the Jeju Coastal Sea and the West Sea, 
observation points are distributed across three locations. Data 
acquisition intervals of the data varied across different observation 
points (Table 1). Using a water depth of 30 m as a reference, 
observation locations with a larger water depth were classified as 

Fig. 2 Location of oceanographic buoys 

offshore sea, whereas observation locations with a smaller water depth 
were classified as nearshore sea (Froehlich et al., 2017). In the case of 
beaches, data were measured at intervals of 5 min for all the beaches 
except for Haeundae Beach, where data were measured at intervals of 
1 min. At observation points near islands, data were measured at 
intervals of 10 min. In the eastern part of the South Sea and the 
southern sea of Jeju, which are offshore seas, data were measured at 
intervals of 30 min. The data consist of the measurements of the 
current speed (CS), current direction (CD), water temperature (WT), 
salinity, significant wave height (SWH), significant wave period 
(SWP), maximum wave height (MWH), maximum wave period 
(MWP), wave direction (WD), wind speed (WS), wind direction 
(WD), air temperature (AT), and air pressure (AP), taken from 2012 to 
2021. To train and evaluate the model used to predict significant wave 
heights and significant wave periods, the holdout cross-validation was 
used to divide the dataset into the training, validation, and test sets. 
The training set consisted of the data collected in the East Sea, the 
South Sea, and the Jeju Coastal Sea, for a total period of eight years 
from 2012 to 2019. However, in the case of the West Sea, data were 
not provided between 2012 and 2014. Hence, the data consisted of the 

(a) (b) (c)
Fig. 1 Deep prediction model structure: (a) RNN, (b) LSTM, and (c) GRU
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measurements taken from 2015 onward. To evaluate the performance 
of the trained model and determine the optimized hyperparameters, the 
validation set consisted of the data collected in 2020. The test set 
consisted of the data collected in 2021 and was used to perform the 
final evaluation of the model. To ensure temporal continuity and 
maximize the utilization of the data, the model was trained by sliding 
one day at a time for various window sizes. The wind direction and 
current direction, which indicate the direction in the data, were in polar 
coordinates. To solve the discontinuity between 0° and 360°, the polar 
coordinates were converted into Cartesian coordinates (x, y) and used 
as input variables (Park et al., 2021). The wave direction had a high 
proportion of missing values in all sea areas, with 37% in the East Sea, 
23% in Jeju, 60% in the South Sea, and 88% in the West Sea. Hence, it 
was excluded from the input variables. Furthermore, the salinity data 
were not available for the years corresponding to the validation and 

test sets; hence, salinity was also excluded from the input variables. 
Fig. 3 shows the analysis of the input data from Saengildo in the South 
Sea for 2021. In the case of water temperature and air temperature, 
values below -50 °C and above 50 °C were deemed unrealistic. Hence, 
these values were removed to handle the outliers. In addition, data 
from the time period in which outliers (“0,” “NaN,” “-,” “99.99”) 
occurred owing to problems with the observation equipment were 
removed. The water temperature values ranged between 7 °C and 30 
°C, and the air temperature values ranged between -10 °C and 30 °C 
(Figs. 3 (a) and (b)). Fig. 3(c) shows a rose diagram of the wind 
direction and wind speed, whereas Fig. 3(d) shows a rose diagram of 
the current direction and current speed. True north (0°) is the reference 
point in the rose diagrams, and the rose diagram is divided into east 
(90°), south (180°), and west (270°) in the clockwise direction. Fig. 
3(e) shows the distribution of air pressures. There are no outliers, and 

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Exploratory data analysis in Saengildo: (a) water temperature, (b) air temperature, (c) rose diagram of wind, (d) rose diagram of
current, (e) air pressure, (f) correlation matrix in the northwest of Ulleungdo
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Table 2 Significant wave height and period distribution in Jungmun 
beach

Significant wave 
variable Interval Total data Proportion (%)

Significant wave 
height

0–1 m 48,671 95.5
1–2 m 2,127 4.17
2–3 m 121 0.24
3–4 m 45 0.09

Significant wave 
period

0–3 s 5,288 10.38
3–6 s 33,547 65.85
6–9 s 10,844 21.28
9–12 s 1,055 2.07
12–15 s 229 0.45

the air pressure values are distributed between 1000 hPa and 1035 hPa. 
At Jungmun Beach, the current direction is distributed in the west and 
northeast directions, and the current speed is evenly distributed at over 
0.7 cm/s. On the other hand, the wind direction is in the northwest and 
east directions, and the wind speed is uniformly distributed at 11 m/s 
or lower. Table 2 shows the distribution of significant wave heights 
with intervals of 1 m and significant wave periods with intervals of 3 s. 
In the case of significant wave heights, significant wave heights within 
1 m account for the majority, with a proportion of 90.55%, whereas 
waves over 3 m account for a very small proportion at 0.5%. 

3.2 Input Features and Layer Selection
Waves are generated by wind speed, wind direction, and the 

duration and fetch of the wind, and determining variables is important 

for wave prediction (Sabatier, 2007). Fig. 3(f) shows the correlations 
between the data collected in the northeastern part of Ulleungdo. 
Notably, the maximum wave height (MWH) and significant wave 
period (SWP) showed high positive correlations of 0.97 and 0.75, 
respectively, with the significant wave height (SWH). Moreover, the 
significant wave height showed a significant correlation value of 0.67 
with the wind speed (WS). In this study, data excluding salinity and 
wave direction were used as input variables, and the feature scaling 
method was applied to the input variables. The hidden layer is an 
important element for determining the complexity and output of the 
neural network, and the number of nodes and layers in the hidden layer 
has a significant effect on the structure and performance of the model. 
In this study, hidden layers were constructed between the input and 
output layers, and the number of nodes and layers in the hidden layer 
was determined by iteratively conducting an experiment. All the 
models consisted of three hidden layers, including the dropout layer to 
prevent overfitting. The first hidden layer had 32 nodes, and the 
second hidden layer had 16 nodes. The dropout was set to deactivate 
20% of neurons randomly. The tanh activation function was used in 
the hidden layers, and a linear activation function was used in the 
output layer (Table 3). Considering computational efficiency, the 
Adam optimizer was selected as the optimization algorithm (Park et 
al., 2021), and the mean absolute error (MAE) was used as the loss 
function. Furthermore, to prevent overfitting and save training time, 
early stopping was used, which halts the training when the validation 
performance does not improve over consecutive epochs. The number 
of epochs and batch size were fixed at 200 and 256, respectively, and 
the learning rate was set to 0.001. Moreover, machine learning was 
implemented using Python 3.9.0, TensorFlow 2.9.0, and Keras 2.9.0 

Sea area Observation point Latitude Longitude Data acquisition 
interval (min)

Depth of water 
(m)

East Sea

Gyeongpodae beach N 37°48'32" E 128°55'55" 5 22
Naksan beach N 38°07'21" E 128°39'02" 5 20
Sokcho beach N 38°11'55" E 128°37'53" 5 28

Northeast of Ulleungdo N 38°00'26" E 131°33'09" 30 1,260
Northwest of Ulleungdo N 37°44'34" E 130°36'04" 30 1,050

South Sea

Eastern part area of the south sea N 34°13'21" E 128°25'08" 30 72
Korea strait N 34°55'08" E 129°07'17" 30 90
Saengildo N 34°15'31" E 126°57'37" 10 21

Songjeong beach N 35°09'53" E 129°13'10" 5 17
Imrang beach N 35°18'09" E 129°17'33" 5 24

Haeundae beach N 35°08'56" E 129°10'13" 1 9

West Sea
Daecheon beach N 36°16'27" E 126°27'28" 5 13

Sangwangdeungdo N 35°39'09" E 126°11'39" 10 22
Uido N 34°32'35" E 125°48'10" 10 38

Jeju Coastal Sea
Jeju strait N 33°42'00" E 126°35'26" 30 120

Southern part area of the Jeju coastal sea N 32°05'25" E 126°57'57" 30 114
Jungmun beach N 33°14'04" E 126°24'34" 5 13

Table 1 Information of oceanographic buoys
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deep learning framework. The number of learning parameters was 
derived through the calculation process from Eqs. (1)–(3): 2,290 for 
RNN, 9,058 for LSTM, and 6,946 for GRU.

4. Experimental Results

This study presents a wave prediction model by sea area and a wave 
prediction model by observation point. The optimal parameters were 
determined for various window sizes, ranging from 1 d to 28 d, and the 
performance was evaluated by comparing the MAE between the 
predicted and observed values for the RNN, LSTM, and GRU models. 
For the wave prediction model by sea area, the data for all the 
observation points in the sea areas were standardized to intervals of 30 
min, which is the maximum interval. On the other hand, the wave 
prediction model by observation point was constructed using the 
actual measurement intervals considering the data continuity. The 
optimal parameters were derived from the wave prediction model by 
sea area, and they were applied to the wave prediction model by 
observation point. Then, the results were compared with the results of 
the wave prediction model by sea area to evaluate the performance. 

4.1 Wave Prediction Model by Sea Area
To present the wave prediction model by sea area, the observed data 

for each sea area were adjusted to the maximum interval of 30 min. 
Table 4 shows the MAE results of the wave prediction model by sea 
area. For the prediction of significant wave heights and significant 
wave periods, the GRU model achieved the optimal results at all the 
observation points except for the Korea Strait when the window size 
was either 4 d or 7 d (Figs. 4 (a) and (b)). 

4.1.1 Significant wave height
For the significant wave height prediction results of the wave 

prediction model by sea area, the GRU model had the highest 
accuracy, followed by the RNN and LSTM models in order (Table 4). 
Fig. 4(a) shows the MAE results of the wave prediction model by sea 
area according to the window size, and the results at all the observation 
points had errors within 0.22 m of the observed values.

In the East Sea, the prediction of significant wave heights at Naksan 
Beach demonstrated a high prediction accuracy with an MAE ranging 
between 0.109 m and 0.116 m (Table 4, East Sea). Among these 
results, the MAE was 0.109 m when the model was trained for 4 d, 

showing a slight difference of 0.038 m from the MAE of the wave 
prediction model by observation point, which demonstrated the 
optimal value. The MAE value in the northeastern area of Ulleungdo 
was 0.161 m, which was the largest error among the observation points 
in the East Sea. Nevertheless, it only had a difference of 0.048 m from 
the MAE of the wave prediction model by observation point, 
indicating a good performance. The wave prediction model for the 
East Sea had accurate prediction results at all the observation points, 
with errors within 0.161 m of the observed values. It also showed an 
outstanding performance with differences within 0.048 m compared 
with the wave prediction model by observation point (Table 5, East 
Sea). 

In the South Sea, the prediction results of the GRU model at 
Saengildo were closest to the observed values, with MAE values 
ranging between 0.072 m and 0.079 m (Table 4, South Sea). In 
particular, the MAE was 0.072 m when the model was trained for 4 d, 
and the difference from the results of the wave prediction model by 
observation point was 0.040 m. The eastern area of the South Sea had 
the largest error (0.133 m) among the observation points in the South 
Sea. However, it only had a slight difference of 0.039 m compared 
with the wave prediction model by observation point. Overall, the 
wave prediction model for the South Sea derived accurate prediction 
results, with errors within 0.133 from the observed results. 
Furthermore, it demonstrated an outstanding performance with 
differences within 0.047 m compared with the wave prediction model 
by observation point (Table 5, South Sea). 

For the West Sea, the prediction results at Daecheon Beach were the 
most accurate among all the observation points in the West Sea, with 
errors ranging between 0.051 m and 0.056 m (Table 4, West Sea). 
Among these results, the MAE was 0.051 m when the window size 
was 4 d, showing a slight difference of 0.017 m from the MAE of the 
wave prediction model by observation point. Sangwangdeungdo had 
the highest error among all the observation points in the West Sea with 
an MAE of 0.124 m. However, this MAE has a difference of 0.025 m 
compared with that of the wave prediction model by observation point; 
hence, prediction results close to the observed results were derived. In 
the case of the wave prediction model for the West Sea, the MAE 
between the predicted results and the observed results was within 
0.124 m at all the observation points. Furthermore, the differences 
were within 0.025 m compared with the wave prediction model by 
observation point, demonstrating the outstanding performance of the 

Model
Input layer Hidden layer Activation 

function
No. of learning 

parameters Dropout
No. of data Step size Window size No. of node Layer

RNN

13 1 d

1 d
2 d
4 d
7 d
14 d
28 d

32
16

First
Second tanh

2,290

0.2LSTM 9,058

GRU 6,946

Table 3 Summary of hyperparameters
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wave prediction model for the West Sea (Table 5, West Sea).
In the Jeju Coastal Sea, the Jeju Strait had the most accurate 

predictions with an MAE of 0.076 m when the window size was 7 d. 
The results showed a slight difference of 0.005 m compared with the 
wave prediction model by each observation point. On the other hand, 
the error was 0.143 m in the southern area of the Jeju Coastal Sea, and 
the prediction accuracy was relatively low. Moreover, the difference 
between these results and that of the wave prediction model by 
observation point was 0.0 m (Table 5, Jeju Coastal Sea). Fig. 5(a) 
shows a prediction graph of significant wave heights in the Jeju Strait 
in 2021. The prediction accuracy of the GRU model is higher than that 
of the other models on December 3 when the wave height is over 3 m. 
In addition, all the models demonstrated smaller errors when the wave 
height was 3 m or lower. Furthermore, the errors of the models 
excluding the GRU model increased gradually when the wave height 
was over 3 m (Table 6).

4.1.2 Significant wave period
Fig. 4(b) shows an MAE graph for the significant wave period of the 

wave prediction model by sea area according to the window size. The 
significant wave periods predicted by the wave prediction model by 
sea area exhibited errors within 0.55 s at all the observation points and 
had differences within 0.152 s compared with the prediction results of 
the wave prediction model by observation point. The accuracy of wave 
period predictions varied depending on the observation location; the 
prediction results were particularly accurate when the observation 
points were located in offshore seas rather than in nearshore seas. 
When waves move from an offshore sea toward a nearshore sea, 
phenomena, such as refraction and diffraction, can occur owing to a 
continental slope or the topography of the sea floor (Rhines and 
Bretherton, 1973). Owing to this process, waves in nearshore seas have 
variable characteristics compared with waves observed in offshore 
seas, which affects wave predictions.

In the East Sea, the MAEs at all the observation points were within 
0.46 s, and the data measured at beaches ranged between 0.4 s and 0.5 
s. The northeast and northwest areas of Ulleungdo, which are offshore 
seas, had the most accurate prediction results among the observation 
points in the East Sea, with the MAEs of 0.276 s and 0.272 s, 
respectively (Table 5, East Sea). Particularly, in the comparison 
between the wave prediction model by sea area and the wave 
prediction model by observation point, the differences at beaches were 
within 0.2 s. Furthermore, the wave prediction model by sea area 
provided more accurate results in Ulleungdo. Data by sea area are 
more diverse and consist of a larger amount of data than the data by 
observation point, and it is presumed that these aspects of the data 
have affected the learning of the model.

In the South Sea, the MAEs ranged between 0.447 s and 0.490 s at 
beaches besides Saengildo located in nearshore seas, the MAEs ranged 
between 0.345 s and 0.397 s in the eastern part of the South Sea and the 
Korea Strait, which are offshore seas. Of these results, the eastern part 
of the South Sea demonstrated an MAE of 0.345 s when the window 

size was 7 d, which was the most accurate among the results at the 
observation points in the South Sea. In particular, the results of the 
wave prediction model by sea area had very slight differences 
compared with those of the wave prediction model by observation 
point, ranging from 0.048 s to 0.134 s. Thus, the wave prediction 
model by sea area demonstrated an outstanding performance (Table 5, 
South Sea).

In the West Sea, the errors between the observed and predicted 
values at three observation points were not significant. Compared with 
the observed values, Sangwangdeungdo and Uido had the errors of 
0.397 s and 0.417 s, respectively. In particular, the predicted results at 
Daecheon Beach had the highest accuracy among the observation 
points in the West Sea with an error of 0.392 s when the model was 
trained for 7 d. Moreover, the wave prediction model by sea area used 
in the West Sea demonstrated an outstanding performance with 
differences ranging between 0.066 s and 0.114 s compared with the 
results of the wave prediction model by observation point (Table 5, 
West Sea).

In the Jeju Coastal Sea, the optimal prediction result was observed 
in the southern area of the Jeju Coastal Sea with an MAE of 0.274 s 
when the window size was 7 d. The MAEs at the Jeju Strait and 
Jungmun Beach were 0.293 s and 0.491 s, respectively, when the 
model was trained for 4 d. Furthermore, the differences from the 
results of the wave prediction model by observation point were 0.056 s 
and 0.048 s at Jungmun Beach and the southern area of the Jeju 
Coastal Sea, respectively. On the other hand, the wave prediction 
model by sea area demonstrated a smaller error for the Jeju Strait, with 
a difference of 0.024 s (Table 5, Jeju Coastal Sea). Fig. 5(b) shows a 
graph of the prediction results of the significant wave period for the 
Jeju Strait in 2021. According to the graph, only the GRU model made 
predictions on December 3 when the wave period was 9 s or longer. 
Moreover, a comparison between Figs. 5 (a) and (b) shows that 
significant wave periods are 8 s or longer when significant wave 
heights are 3 m or higher, which shows that the wave height and the 
wave period have a proportional relationship.

Predictions made by the models used in this study were generally 
accurate, with errors within 0.57 m compared with the observed 
values. However, when the wave height was 3 m or higher or the 
wave period was 9 s or longer, only the GRU model demonstrated an 
outstanding prediction performance. Such prediction accuracy varies 
according to the structure and learning parameters of each model. If 
there are fewer learning parameters, the performance of learning 
complex patterns decreases, and the models have difficulty in learning 
long-term dependent data. Moreover, a problem occurs where 
previous information is lost over time. On the other hand, when there 
are several learning parameters, the computational efficiency 
decreases, and the risk of overfitting increases, which leads to a 
reduced accuracy. Therefore, appropriate learning parameters are 
necessary for accurate predictions. Among the three models that were 
executed under the same layer conditions, the GRU model 
compensated for the long-term dependency problems of RNNs. The 



(a) (b)
Fig. 4 MAE by window size using the wave prediction model by sea area: (a) significant wave height, and (b) significant wave period

(a) (b)
Fig. 5 Prediction graph in the Jeju Strait using the wave prediction model by sea area: (a) significant wave height, and (b) significant 

wave period

Table 4 Representative MAE results for each sea area using wave prediction model

Sea Area Observation
Point Model Window size

1 d 2 d 4 d 7 d 14 d 28 d

East Sea Naksan beach

RNN Height (m) 0.132 0.131 0.126 0.127 0.142 0.147
Period (s) 0.466 0.464 0.453 0.459 0.467 0.483

LSTM Height (m) 0.130 0.127 0.126 0.129 0.130 0.136
Period (s) 0.473 0.477 0.461 0.452 0.462 0.483

GRU Height (m) 0.113 0.112 0.109 0.111 0.115 0.116
Period (s) 0.436 0.442 0.431 0.422 0.429 0.443

South Sea Saengildo

RNN Height (m) 0.091 0.086 0.082 0.073 0.079 0.080
Period (s) 0.514 0.495 0.481 0.475 0.475 0.489

LSTM Height (m) 0.095 0.088 0.086 0.090 0.089 0.091
Period (s) 0.544 0.536 0.525 0.562 0.547 0.540

GRU Height (m) 0.079 0.074 0.072 0.078 0.079 0.079
Period (s) 0.491 0.483 0.471 0.479 0.486 0.492

West Sea Daecheon 
beach

RNN Height (m) 0.072 0.069 0.067 0.072 0.071 0.072
Period (s) 0.450 0.450 0.458 0.424 0.447 0.439

LSTM Height (m) 0.071 0.066 0.061 0.066 0.066 0.064
Period (s) 0.452 0.441 0.438 0.438 0.439 0.434

GRU Height (m) 0.054 0.054 0.051 0.054 0.056 0.055
Period (s) 0.413 0.411 0.405 0.392 0.417 0.397

Jeju coastal Sea Jeju strait

RNN Height (m) 0.093 0.089 0.090 0.087 0.091 0.093
Period (s) 0.351 0.337 0.317 0.345 0.347 0.334

LSTM Height (m) 0.147 0.139 0.100 0.115 0.157 0.127
Period (s) 0.452 0.384 0.366 0.387 0.383 0.434

GRU Height (m) 0.086 0.079 0.080 0.076 0.076 0.079
Period (s) 0.312 0.308 0.293 0.296 0.304 0.305
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GRU model also had an appropriate number of learning parameters 
with a simplified structure of an LSTM, and it demonstrated a high 
accuracy in wave predictions. 

4.2 Optimal Wave Prediction Model by Each Location
The wave prediction model by observation point used the data 

measured at the actual measurement intervals of each observation 
point, considering the temporal continuity of the data. Table 4 shows 
that the GRU model demonstrated better prediction results than the 
RNN and LSTM models at all the observation points. Furthermore, the 
optimal values were determined for a window size of 4 or 7 d through 
Fig. 4. Therefore, the wave prediction model by observation point was 
executed by setting the window size that allows the wave prediction 
model by sea area to achieve the optimal value. Table 5 shows the 
MAE results at each observation point.

4.2.1 Significant wave height
The prediction results of significant wave height by observation 

point varied according to the actual measurement interval, and the 
prediction accuracy was relatively high when the actual measurement 
interval was within 5 min (Table 5). The data near the beaches in the 
East Sea were recorded every 5 min for the beaches in the East Sea and 
30 min for Ulleungdo. Accurate prediction results were obtained for 
Gyeongpodae Beach, with an MAE of 0.068 m. Naksan Beach and 
Sokcho Beach had the MAE values of 0.071 m and 0.087 m, 
respectively, whereas the northeast and northwest areas of Ulleungdo 
had the MAE values of 0.113 m and 0.110 m, respectively (Table 5, 
East Sea).

In the South Sea, data were measured at intervals of 5 min or less at 
the beaches, whereas data were measured at intervals of 10 min at 
Saengildo. Moreover, data were measured at intervals of 30 min at all 
the other observation points. For the observation points located at the 
beaches, the MAE values ranged between 0.05 m and 0.075 m. In the 
case of the Korea Strait and the eastern area of the South Sea located in 
the offshore sea, the results were 0.093 m and 0.094 m, respectively. In 
particular, Saengildo had the best results among all the observation 
points, with an MAE of 0.032 m (Table 5, South Sea).

In the West Sea, data for each observation point were acquired 
differently depending on the location. Data were acquired at intervals 

of 5 min at Daecheon Beach and the MAE was 0.034 m, which is the 
most accurate prediction result among all the beaches. In the case of 
Sangwangdeungdo and Uido, data were measured at intervals of 10 
min, and the MAE values were 0.099 m and 0.091 m, respectively 
(Table 5, West Sea).

For the Jeju Coastal Sea, the data acquisition interval at Jungmun 
Beach was 5 min, and the MAE at this observation point was 0.074 m, 
which is the lowest error among the MAE values at all the observation 
points in the Jeju Coastal Sea. On the other hand, data were collected at 
intervals of 30 min at the Jeju Strait and the southern area of the Jeju 
Coastal Sea. The MAEs at these observation points were both 0.081 m 
(Table 5, Jeju Coastal Sea). Fig. 6(a) shows a graph of the prediction 
results of the significant wave height for the Jeju Strait in 2021. 
According to this graph, the prediction accuracy tends to decrease 
when the wave height is over 3 m. Table 6 shows the MAE values for 
each interval at the Jeju Strait, and the performance for each model can 
be analyzed based on these results. Notably, compared with the GRU 
wave prediction model by sea area, the differences between the two 
models were less than 0.067 m when the wave height was 3 m or less. 
Hence, the two models demonstrated relatively similar performances. 
However, the difference was 0.263 m when the wave height was 
between 3 m and 4 m, and the difference was 1.079 m when the wave 
height exceeded 4 m. Hence, as the wave height increased, the GRU 
wave prediction model by sea area produced more accurate predictions 
than the GRU wave prediction model by observation point.

4.2.2 Significant wave period
The errors for the prediction of significant wave periods were within 

0.45 s at all the observation points, and the results were different 
depending on the observation location (Table 5). When waves move 
from an offshore sea toward a nearshore sea, they undergo 
transformations owing to various factors, such as the topography of the 
sea floor, refraction, and diffraction. Through this process, waves in 
nearshore seas have variable characteristics compared with relatively 
consistent waves observed in offshore seas, which affects wave 
predictions.

In the East Sea, the MAE values were derived to be approximately 
0.3 s at all the observation points. The MAEs were 0.308 s for 
Gyeongpo Beach, 0.324 s for Naksan Beach, and 0.322 s for Sokcho 

(a) (b)
Fig. 6 Prediction graph in the Jeju Strait using the optimal wave prediction model: (a) significant wave height, and (b) significant wave

period
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Beach. In the case of Ulleungdo, which is located in the offshore sea, 
the northeast and northwest areas had the MAEs of 0.293 s and 0.299 
s, respectively. Hence, they had smaller errors than the results for the 
beaches (Table 5, East Sea). In the South Sea, Haeundae Beach had an 
MAE of 0.356 s, Imrang Beach an MAE of 0.357 s, and Songjeong 
Beach an MAE of 0.363 s. Hence, MAE values of approximately 0.36 
s were derived for the observation points at beaches. Moreover, 
Saengildo, which is located between islands, had the largest error, with 
an MAE of 0.416 s, among all the observation points in the South Sea. 
On the other hand, the Korea Strait and the eastern area of the South 
Sea, which are offshore seas, had the MAE values of 0.345 s and 0.297 
s, respectively (Table 5, South Sea). In the West Sea, the wave 
prediction model by observation point exhibited errors ranging 
between 0.28 s and 0.33 s compared with the observed values. In 
particular, Daechon Beach had the largest error among all the 
observation points in the West Sea with an MAE of 0.326 s. 
Sangwangdeungdo and Uido had the MAE values of 0.283 s and 0.322 
s, respectively (Table 5, West Sea). In the Jeju Coastal Sea, Jungmun 
Beach had an MAE of 0.435 s. On the other hand, the Jeju Strait and 

the southern area of the Jeju Coastal Sea, located in the offshore sea, 
had the MAE values of 0.298 s and 0.245 s, respectively (Table 5, Jeju 
Coastal Sea). Fig. 6 (b) shows a graph of the prediction results of the 
significant wave period for the Jeju Strait for the wave prediction 
model by observation point. According to this graph, the prediction 
accuracy of the GRU model decreases on December 2 if the wave 
period is 8 s or longer. Particularly, the difference between the MAE of 
the GRU wave prediction model by observation point and sea area is 
0.133s when the wave period is less than 8 s. However, the difference 
is 0.387 s when the wave period is between 8 s and 9 s, and the 
difference is 1.480 s when the wave period exceeds 9 s. Hence, the 
prediction performance decreases as the wave period becomes longer.

In this study, various window sizes were applied to the RNN, 
LSTM, and GRU models to determine the optimized hyperparameters. 
In addition, this study presents a wave prediction model by sea area. 
To assess the performance, the optimized hyperparameters were 
applied to the prediction model by observation point, and the results 
were compared. The prediction model by sea area and the prediction 
model by observation point had slight differences in the significant 

Sea area Observation point Data acquisition 
interval (min)

MAE of wave prediction 
model by observation point

MAE of wave prediction 
model by sea area

Height (m) Period (s) Height (m) Period (s)

East Sea

Gyeongpodae beach 5 0.068 0.308 0.110 0.460
Naksan beach 5 0.071 0.324 0.109 0.422
Sokcho beach 5 0.087 0.322 0.117 0.434

Northeast of Ulleungdo 30 0.113 0.293 0.161 0.276
Northwest of Ulleungdo 30 0.110 0.299 0.130 0.272

South Sea

Eastern part area of the south sea 30 0.094 0.297 0.133 0.345
Korea strait 30 0.093 0.345 0.110 0.397
Saengildo 10 0.032 0.416 0.072 0.471

Songjeong beach 5 0.074 0.363 0.121 0.490
Imrang beach 5 0.051 0.357 0.094 0.447

Haeundae beach 1 0.054 0.356 0.082 0.490

West Sea
Daecheon beach 5 0.034 0.326 0.051 0.392

Sangwangdeungdo 10 0.099 0.283 0.124 0.397
Uido 10 0.091 0.322 0.102 0.417

Jeju coastal 
Sea

Jeju strait 30 0.081 0.298 0.076 0.274
Southern part area of the Jeju coastal sea 30 0.081 0.245 0.143 0.293

Jungmun beach 5 0.074 0.435 0.089 0.491

Table 6 Predicted MAE by interval in the Jeju Strait

Model
Significant wave height (m) Significant wave period (s)

0–1 1–2 2–3 3–4 4 < 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9 <
RNN 0.058 0.114 0.202 0.535 1.195 0.627 0.279 0.227 0.261 0.391 0.452 0.347 1.325

LSTM 0.089 0.199 0.420 0.431 0.819 1.008 0.431 0.301 0.395 0.545 0.727 0.425 1.204
GRU 0.056 0.112 0.246 0.342 0.195 0.461 0.254 0.234 0.263 0.338 0.476 0.656 0.575

Location GRU 0.055 0.106 0.179 0.605 1.274 0.328 0.234 0.222 0.237 0.271 0.387 1.043 2.055

Table 5 MAE using the optimal wave prediction model
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wave height and significant wave period at all the observation points. 
The differences in significant wave height were within 0.062 m, and 
the differences in significant wave period were within 0.152 s. Hence, 
the prediction model by sea area demonstrated an outstanding 
prediction performance. The mean absolute percentage error (MAPE) 
was calculated to evaluate the relative magnitude of the prediction 
errors. The MAPE for significant wave height at all the observation 
points was within 18%, and the MAPE for significant wave period was 
within 10%. Hence, the prediction results similar to the observed 
values were derived. Moreover, to assess the significance of the 
research results, they were compared with the results of other studies. 
In a study by Hu (2021), waves in Lake Erie were predicted using 
ensemble techniques. In that study, the MAE of significant wave 
height was within 0.090 m (MAPE 17%), and the MAE of significant 
wave period was within 0.482 s (MAPE 13%). In a study by Minuzzi 
(2023), significant wave heights along the coast of Brazil were 
predicted using LSTM. In that study, the MAE was within 0.13 m 
(MAPE 7%), similar to the results of this study.

5. Conclusion

Marine operations, coastal management, and safety at sea are 
directly affected by waves. Particularly, accurate wave prediction is 
essential for marine development work in new locations. This paper 
proposed a wave prediction algorithm by sea area using data observed 
by oceanographic buoys. To build data by sea area, the data were 
integrated with maximum data intervals of 30 min, whereas data at 
each observation point were constructed with actual measurement 
intervals, considering the temporal continuity of the data. In addition, 
RNN, LSTM, and GRU, which are specialized for processing 
time-series data, were used as the algorithms. Furthermore, the 
optimized hyperparameters were determined by applying various 
window sizes. The results showed that GRU had the highest prediction 
accuracy when the window size was 4 or 7 d. In particular, it 
demonstrated excellent prediction accuracy for specific data with a 
wave height of over 3 m or a wave period of over 9 s. It is presumed 
that the simplified structure of the GRU and the appropriate number of 
learning parameters affected these results. Moreover, to assess the 
performance of the wave prediction model by sea area, the optimized 
hyperparameters were applied to the wave prediction model by 
observation point, and the results were compared. The comparison 
results showed that the wave prediction model by sea area and the 
wave prediction model by observation point, which considers the 
temporal continuity of the data, had slight differences in significant 
wave height and significant wave period at all the observation points. 
The differences were within 0.062 m for the significant wave height 
and 0.152 s for the significant wave period. Hence, the wave prediction 
model by sea area demonstrated an outstanding performance. Unlike 
previous studies, this study developed a method of predicting waves 
by building data for each sea area. This method can contribute to 
ensuring safety and enhancing work efficiency when conducting 

maritime and marine research at new locations. In addition, if the 
missing salinity, wave direction, and wave data can be acquired 
consistently, it is expected that waves will be predicted more 
accurately, and diverse waves will be predicted. Moreover, as data 
provided by the KHOA are used, it is expected that real-time wave 
predictions will be performed through online learning in the future.
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