DOI QR코드

DOI QR Code

Ontogenetic variation in Chironomus flaviplumus (Diptera, Chironomidae) larvae

  • Hyunsu Yoo (NRF Research Center, Fisheries Science Institute, Chonnam National University) ;
  • Jae-won Park (Department of Ocean Integrated Science, Chonnam National University) ;
  • Ihn-Sil Kwak (NRF Research Center, Fisheries Science Institute, Chonnam National University)
  • Received : 2023.09.19
  • Accepted : 2023.12.07
  • Published : 2024.02.28

Abstract

Chironomus is a large genus of Diptera comprising about 400 species and occurs worldwide except for Antarctica. The strong morphological cross-taxon similarity of chironomid larvae renders identification at the species level difficult. Here, we analyzed the morphology of larvae of Chironomus flaviplumus, an easily cultured species employed as a bioindicator in polluted environments, to determine identifying morphological characteristics at the first through fourth instar. Observed differences appearing at each instar include the presence or absence of setae on the body and tubules on the 10th and 11th body segment, the number of seta interna in the mandible, and the presence or absence of ring organs in the antennae. Some specific morphological characteristics did not change after hatching. Our findings provide a reliable method for identifying C. flaviplumus larvae.

Keywords

Acknowledgement

This research was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment(MOE) of the Republic of Korea (NIBR202220202) and by the National Research Foundation of Korea (grant number NRF-2018R1A6A1A03024314).

References

  1. Allergeier, S., A. Kastel and C.A. Bruhl. 2019. Adverse effects of mosquito control using Bacillus thuringiensis var. israelensis: Reduced chironomid abundances in mesosm, semi-field and field studies. Exotoxicology and Environmental Safety 169:786-796. https://doi.org/10.1016/j.ecoenv.2018.11.050
  2. Baranov, V., C. Hoffeins, H.W. Hoffeins and J.T. Haug. 2019. More than dead males: reconstructing the ontogenetic series of terrestrial non-biting midges from the Eocene amber forest. Bulletin of Geosciences 94(2):187-199. https://doi.org/10.3140/bull.geosci.1739
  3. Brovini, E.M., H. Lobo, R.F. Mendonca, C.M.R. Botta, A.L.R.L. Lima, B.C.T. de Deus and S.J. Cardoso. 2023. Chironomus sancticaroli (Diptera: Chironomidae) in ecotoxicology: laboratory cultures and tests. Ecotoxicology 32:223-233. https://doi.org/10.1007/s10646-023-02631-0
  4. Cranston, P.S. 2019. Identification guide to genera of aquatic larval Chironomidae (Diptera) of Australia and New Zealand. Zootaxa 4706(1):71-102. https://doi.org/10.11646/zootaxa.4706.1.3
  5. Ferrington, L.C. 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595(1):447-455. https://doi.org/10.1007/s10750-007-9130-1
  6. Hamerlik, L., F.L. da Silva and D. Jacobsen. 2018. Chironomidae (Insecta: Diptera) of Ecuadorian Highaltitude Streams: A Survey and Illustrated Key. Florida Entomologist 101(4):663-675. https://doi.org/10.1653/024.101.0404
  7. Han, W., H. Tnag, L. Wei and E. Zhang. 2023. The first DNA barcode library of Chironomidae from the Tibetan Plateau with an evaluation of the status of the public databases. Ecology and Evolution 13:e9849.
  8. Johannsen, O.A. 1937. "Part IV. Chironomidae: Subfamily Chironominae." Aquatic Diptera-Eggs, Larvae, and Pupae of Aquatic Flies. Memoirs of the Cornell University Agricultural Experiment Station 210:1-52.
  9. Kawai, K., T. Yamagishi, Y. Kubo and K. Konish. 1989. Usefulness of chironomid larvae as indicators of water quality. Medical Entomology and Zoology 40(4):269-283. https://doi.org/10.7601/mez.40.269
  10. Kwak, I.S. 2015. Introduction to the Chironomidae as a water pollution indicator. Chonnam National University Press pp. 13-156.
  11. Kwak, I.S., G.C. Park, M.Y. Song and T.S. Chon. 2002. Characterization of benthic macroinvertebrate communities and hydraulic factors in small-scale habitats in a polluted stream. Korean Journal of Limnology 35(4):295-305.
  12. Marin, J. and D.S. Chingangbam. 2016. An additional larval type in the genus Chironomus - the yama-type. Journal of Chironomidae Research 29:38.
  13. OECD (2010) OECD Guidelines for the Testing of Chemicals 233: Sediment-Water Chironomid Life-Cycle Toxicity Test Using Spiked Water or Spiked Sediment, Organisation for Economic Co-operation and Development, Paris.
  14. Orel (Zorina), O.V., A.G. Istomina, I.I. Kiknadze, T.D. Zinchenko and L.V. Golovatyuk. 2014. Redescription of larva, pupa and imago male of Chironomus(Chironomus) salinarius Kieffer from the saline rivers of the Lake Elton basin (Russia), its karyotype and ecology. Zootaxa 3841(4):528-550.
  15. Park, J.W., B.S. Ko, H. Yoo, D.S. Kong and I.S. Kwak. 2023. Taxonomic Characteristics of Chironomids Larvae from the Hangang River at the Genus Level. Korean Journal of Ecology and Environment 56(2):140-150. https://doi.org/10.11614/KSL.2023.56.2.140
  16. Prolux, I., J. Martin, M. Carew and L. Hare. 2013. Using various lines of evidence to identify Chironomus species(Diptera: Chironomidae) in eastern Canadian lakes. Zootaxa 3741(4):401-458. https://doi.org/10.11646/3891
  17. Rebechi, D. and M.A. Navarro-Silva. 2012. Setting the reference for the use of Chironomus sancticaroli(Diptera: Chironomidae) as bioindicator: Ontogenetic pattern of larval head structures. Zoologia 29(2):167-171. https://doi.org/10.1590/S1984-46702012000200009
  18. Schaller, J. 2014. Bioturbation/bioirrigation by Chironomus plumosus as main factor controlling elemental remobilization from aquatic sediments? Chemosphere 107:336-343. https://doi.org/10.1016/j.chemosphere.2013.12.086
  19. Silva, C.J.M., A.L.P. Silva, D. Campos, A.L. Machado, J.L.T. Pestana and C. Gravato. 2021. Oxidative damage and decreased aerobic energy production due to ingestion of polyethylene microplastics by Chironomus riparius (Diptera) larvae. Journal of Hazardous Materials 402(15):123775.
  20. Tang, H.Q., M.Y. Song, W.S. Cho, Y.S. Park and T.S. Chon. 2010. Species abundance distribution of benthic chironomids and other macroinvertebrates across different levels of pollution in streams. Annales de Limnologie - International Journal of Limnology 46(1): 1-14. https://doi.org/10.1051/limn/2010005
  21. US-EPA. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment associated Contaminants with Freshwater Invertebrates, Second edition, EPA 600/R-99/064, March 2000, Revision of the first edition dated June 1994.